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Event-by-event γ − ch correlation is used in studying systems going through QCD chiral phase
transition. In this paper various methods for measuring γ − ch correlation in heavy ion collisions
have been discussed. Dynamical fluctuation due to formation of domains of DCC that can affect
γ − ch correlation has been discussed. We study known detector and statistical effects involved in
these measurements and suggest suitable robust observables ∆νdyn and rm,1 sensitive to small γ − ch
correlation signal. These variables are constructed based on moments of multiplicity distributions
of photon and charged particles. Estimations of expected measurable signals of γ − ch correlation
from various available models such as for ideal Boltzmann gas of pions, monte-carlo models based
on transport and mini-jets have been discussed. Collision centrality dependence of the observables
have been estimated from Central Limit Theorem and found to be consistent with the model predic-
tions. We find that observables show high sensitivity to fraction of DCC events and have nonlinear
dependence on fraction of pions carrying DCC signals. Variation of rm,1 with orders of its higher
moments m is an observable to extract the nature and strength of γ − ch correlation.

I. INTRODUCTION

Based on decades of experimental searches and theo-
retical studies it is widely believed that high energy heavy
ion collisions produce realistic scenario for studying the
phase transition from hadronic matter to Quark gluon
plasma. It is believed to be associated with two differ-
ent transitions, de-confinement and restoration of QCD
chiral symmetry. Fluctuation of conserved quantities has
been proposed [1] to be an important experimental sig-
nature for such phase transition. Hadronic system that is
mostly dominated by pions is expected to show a global
isospin conservation. In such scenario the event-by-event
isospin number fluctuation is an interesting observable.
The QCD chiral phase transition is associated with melt-
ing of 4-vector condensates. An interesting phenom-
ena like formation of metastable domains of “Disoriented
Chiral Condensate” (DCC) is predicted to occur due to
the orientation of this condensate relative to the direc-
tion of its scalar component. Such a phenomena is pos-
sible for a scenario of rapid cooling like quenching [2–5]
for system going from chiral symmetry restored phase to
broken phase. Formation of DCC domains causes anoma-
lous production of charged or neutral pions depending on
the orientation of vacuum towards its pseudo scalar com-
ponent. Such phenomena might survive final state inter-
actions and appear in the form of multiplicity fluctuation
of pions of relative isospins[4]. As the detected charged
and neutral particles are mostly from the charged pions
and the decay of neutral pions respectively this would
appear in the form of γ − ch anti-correlation. The ex-
perimental searches of DCC so far includes searches in
pp collisions[8], cosmic ray events[9] and in heavy ion
collisions[10, 14]. Our discussion would be relevant to the
search in heavy-ion collisions. There are several theoret-
ical predictions for a hot medium described by the linear
sigma model [6, 7, 15]. For example ref [15] showed that
in the case of central collision of Pb-Pb at SPS energies,
the likelihood of the DCC events is less than 10−3. Ex-

perimental searches at SPS WA98 experiment [10–13] at√
s=17.3 GeV estimated an upper limit of 3 × 10−3. It

has been argued [16] that in case of rapid cooling like
quenching scenario, higher collision energies correspond-
ing to lower chemical potential (e.g. µRHIC < µSPS)
provides faster cooling rate (|dT/dt|). This suggests that
RHIC and LHC collisions provide more favorable condi-
tion for DCC production than SPS collisions. Theoreti-
cally opinions are varied about the proper observability
of DCC formation [6, 7, 15–17]. Experimental searches
in ongoing heavy-ion program at RHIC and LHC would
certainly be most appropriate way to address such issues
and test such several predictions.

From experimental point of view such a study is as-
sociated with simultaneous measurement of photons and
charged particles in common phase space with very high
sensitivity at low momentum. This is because the decay
of domains of DCC are final stage phenomena of the evo-
lution of heavy ion collision and the pions carrying signals
are expected to be of low momentum. A combination of
pre-shower Photon Multiplicity detector(PMD)[18] and
forward time projection chamber(FTPC)[19] at STAR
experiment at RHIC and Photon Multiplicity detec-
tor(PMD) and Forward Multiplicity Detector(FMD) at
ALICE experiment[20] at LHC have the required criteria
to satisfy such a goal.

The main aim of this paper is to highlight issues as-
sociated to γ − ch experimental correlation analysis by
proposing methods which will be used in heavy ion colli-
sion experiment. It should be noted that, these measures
could be used as generalized quantities for γ − ch corre-
lation analysis and not limited to specific case of DCC
formation. Experimentally , observables being used for
γ − ch correlation measurement suffer from various de-
tector effects. It is therefore important to construct suit-
able quantities and study their dependencies on experi-
mental parameters. We use generating function approach
to calculate different variables and include various detec-
tion effects like efficiencies, effect of mis-identification etc.
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Observables of γ − ch correlation are constructed to be
suitable for heavy ion collisions that can disentangle dy-
namical fluctuation. In the context of DCC we would
not discuss dynamical origin of such phenomenon. We
assume formation of DCC domains to be one of the prob-
able sources of dynamical signal of isospin fluctuation of
pion production. This would lead to a distribution of
neutral pion fraction very distinct from that of generic
production of pions under isospin symmetry [3, 5]. We
discuss the sensitivity of the observables to the fraction
of DCC events and the fraction of DCC candidates in
an event. Relevant to the heavy ion collisions we discuss
the centrality dependance of the variables. We estimate
γ − ch correlation from various models and implement a
DCC-model based on HIJING event generator.

In the section II we outline the method of construction
of the observables and their values for DCC events of
varying fraction. Section III, IV and V describe the de-
tector effect like mis-identification, the role of resonances
and centrality dependance respectively on the proposed
variables. In section VI we have calculated the sensitivity
of the variables on DCC event fraction and pion fractions
in DCC events. For studying the experimental sensitiv-
ity of DCC, we have studied various non-DCC models
in section VII and implemented DCC in a Monte-Carlo
based events in section VIII. We summarize in section
IX.

II. METHOD

Fluctuation of particle ratios has been addressed previ-
ously in case of conserved quantities like net strangeness
in terms of kaon-to-pion ratio and net baryons in terms
of proton to pion ratios. Relevant to our case is the
study of photon to charge particle multiplicity ratio. Ob-
servables used in such cases are designed in such a way
so as to eliminate the statistical fluctuations and at the
same time be robust against detector inefficiency. A sim-
ple way of implementing detector efficiencies in terms
of a binomial probability distribution function say of
the form P (n,N, ε) = NCn ε

n(1 − ε)N−n would reveal
the fact that the second moment of observed multiplic-
ity n is not proportional to second moment of produced
multiplicity N . The efficiency term ε does not factor-
ize for quantities like variance, skewness and kurtosis.
However the quantities like observed second and higher
order factorial moments comes out to be proportional
to the measured corresponding factorial moments like
〈n(n − 1)〉 = ε2〈N(N − 1)〉. Ratios of various factorial
moments with powers of mean multiplicity would sim-
ply cancel the explicit efficiency dependence. Observ-
ables based on factorial moments have been previously
introduced in case of model prediction for event by event
fluctuations in pion multiplicites as an observable of DCC
[21]. In case of correlation of multiplicities, there could be
more complicated detector effects like mis-identification
of one species in the form of another, decay and resonance

production. This could lead to spurious correlation af-
fecting the final results. Also in case of heavy ion col-
lisions there are centrality and system size dependence.
Based on similar context and considering various other
aspects of particle ratio-fluctuation, two observables were
introduced earlier as measure of dynamical fluctuations.
νdyn was introduced in Ref [22] and used by STAR Col-
laboration [23, 24] and rm,1 was introduced by Minimax
collaboration[25]. The variable νdyn in our context can
be defined as

νγ−ch
dyn =

〈Nch(Nch − 1)〉
〈Nch〉2

+
〈Nγ(Nγ − 1)〉
〈Nγ〉2

− 2
〈NchNγ〉
〈Nγ〉 〈Nch〉

(1)
which for purely statistical fluctuation (Poissonian case)
should give zero. The variable rm,1 is defined as

rγ−ch
m,1 =

〈Nch(Nch − 1).. (Nch −m+ 1) Nγ〉 〈Nch〉
〈Nch(Nch − 1)..(Nch −m)〉 〈Nγ〉

. (2)

It is designed such that for all the moments it gives a
value equal to 1 for Poisson case and higher order mo-
ments show larger sensitivity to signals. In this section
we would like to discuss the applicability, robustness and
sensitivity of these two variable for γ − ch correlation.
Since we are interested in fluctuation of ratio of multi-
plicities let us consider f = Nπ0/(Nπ0 +Nπ±) to be the
neutral pion fraction. The idea is that by using proper
combinations of moments we can eliminate the efficiency
dependence and express our observable in terms of the
fluctuation of the fraction f . The most efficient way
of studying the moments including the dynamical and
detector effect is to follow the generating function ap-
proach [25] where we define,

G(z) =

∞∑
N=0

zN P (N) (3)

where P (N) denotes the distribution of parent multiplic-
ity where , N = Nπ0 + Nπ+ + Nπ− denotes sum of all
neutral and charged pions. Different moments are cal-
culated by taking derivatives of G(z) with respect to z
evaluated at z = 1. Considering the fact that the neutral
pions are distributed according to the probability P(f)
the generating function has to be modified accordingly

G(zch, z0) =

1∫
0

df P(f)
∑
N

P (N) [fz0 + (1− f)zch]
N
.

(4)
The distribution P(f) is the event-by-event measured
distribution of neutral pion fraction. Isospin symmetry
for a pion gas corresponds to a generic case of pion pro-
ductions for which P(f) = δ(f−1/3). In case of DCC like
events[3, 5] we have P(f) = 1/2

√
f . For propagation of

generating function to include the decay of neutral pions
to observed photons we apply the “cluster decay theo-
rem” [26]. We can express the overall generating function
as

Gobs (zch, zγ) = G (gch (zch) , g0 (zγ)) (5)
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where g0(zγ) = z2
γ considering the fact that every neutral

cluster decays into two photons and the charge particles
do not decay, gch(zch) = zch. To make the scenario more
realistic and taking the advantage of same theorem, one
can include detection efficiencies into the final form of
generating function. We consider the observing and non-
observing as different decay modes with probability equal
to the detection efficiency. So for charged and neutral
clusters we redefine

gch(zch) = (1− εch) + εchzch (6)

g0(zγ) = ((1− εγ) + εγzγ)2

Here εch is the efficiency of charge particle detection and
εγ is the efficiency of detecting a photon coming from de-
cay of a neutral pion. We can calculate various factorial
moments of multiplicity with detector efficiency folded in
terms of derivatives of final generating function. We can
define a generalized factorial moment as

fm,n=
∂m,nGobs(zch, zγ)

∂zmch ∂z
n
γ

∣∣∣∣
zch=zγ=1

=

〈
Nch! Nγ !

(Nch −m)! (Nγ − n)!

〉
(7)

It is convenient to express our observables given in eq.1
and eq.2 in terms fm,n as

νγ−ch
dyn =

f20

f2
10

+
f02

f2
01

− 2
f11

f10 f01
, rγ−ch

m,1 =
fm1 f10

f(m+1)0 f01
(8)

Using eq. 4, eq. 5 and eq. 7 we can express few factorial
moments in terms efficiency and average of neutral pion
fraction.

f10 = 〈1− f〉 εch 〈N〉
f01 = 〈f〉 2εγ 〈N〉
f11 = 〈f (1− f)〉 2εγ εch 〈N (N − 1)〉

f20 =
〈

(1− f)
2
〉
ε2

ch 〈N (N − 1)〉

f02 =
〈
f2
〉

4ε2
γ 〈N (N − 1)〉+ 2ε2

γ 〈f〉 〈N〉

Substituting these in eq.1 we obtain

νγ−ch
dyn =

(
〈(1−f)2〉
〈1−f〉2 +

〈f2〉
〈f〉2 − 2 〈f(1−f)〉

〈f〉〈1−f〉

)
〈N(N−1)〉
〈N〉2

+ 1
2〈f〉〈N〉 . (9)

We note here that the for generic case the term inside
the bracket is zero and we have

νγ−ch
dyn

∣∣∣
generic

=
1

2 〈f〉 〈N〉
. (10)

Using proper combination of factorial moments and do-
ing a simple method of event mixing one can extract

the generic value of νγ−ch
dyn (see appendix-X A for details).

Subtracting the generic value of νγ−ch
dyn one can get rid of

the last term in eq.9. So we propose a modified variable

νdyn − νgenericdyn given by

∆νγ−ch
dyn =

(〈
(1− f)2

〉
〈1− f〉2

+

〈
f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)

×〈N(N − 1)〉
〈N〉2

. (11)

In ideal scenarios when all the particles are detected one
can approximate g0(zγ) = z2

γ and gch(zch) = zch. In that
case one can show using eq.5 and eq.7 that

νγ−ch
dyn

∣∣∣
generic

=
1

2 〈N〉 〈f〉
≈ 1√

〈Nch〉 〈Nγ〉
(12)

irrespective of any value of νdyn. So in that case the
observable ∆νdyn can be estimated to be

∆νγ−ch
dyn = νγ−ch

dyn − 1√
〈Nch〉 〈Nγ〉

(13)

Following the same approach one can express the vari-
able rm,1 as

rγ−ch
m,1 =

〈f(1− f)m〉 〈1− f〉
〈(1− f)m+1〉 〈f〉

. (14)

Now we would like to discuss the sensitivity of these two
variables for a given fraction of DCC like signal. If x-
fraction of events has DCC like domain formation, in
simplistic case one can assume that the distribution of
neutral pion fraction to be a combination of generic and
DCC probability distribution given by

P(f) = x
1

2
√
f

+ (1− x) δ

(
f − 1

3

)
. (15)

So for ∆νdyn we have from eq.11

∆νγ−ch
dyn =

(〈
(1− f)2

〉
〈1− f〉2

+

〈
f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)∣∣∣∣∣
signal

×〈N(N − 1)〉
〈N〉2

=
x

5/9

〈N(N − 1)〉
〈N〉2

(16)

which is proportional to the fraction of DCC-like events.
∆νdyn shows very high sensitivity to DCC like signal
but it has dependency on the parent multiplicity and
consequently to the collisions centrality. In later sec-
tion we would discuss this issue in detail. In case
parent distribution is Poissonian, the fluctuation term

〈N(N − 1)〉 / 〈N〉2 would be equal to 1 giving ∆νγ−ch
dyn ∼

x/(5/9).
The robust observable expressed in eq.14 would have

a very particular x dependence given by

rγ−ch
m,1 = 1− mx

(m+ 1)
F (m,x) (17)
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where the function F (m,x) is given by

F (m,x) =
1

x + (1− x) 2√
π

(
2
3

)m+1 Γ(m+5/2)
Γ(m+2)

. (18)

For ideal DCC case (x=1), the function F (m,x)=1 for
all values of m. That gives rm,1 = 1/(m+1). For generic
case(x = 0), rm,1=1. Fig.1 shows the sensitivity of rm,1
for small signals of DCC. The functional form given in
eq.17 can be used to extract x from a fit of rm,1 with
m. In the derivation of eq.16 and eq.17 we have assumed
that the parent multiplicity distribution are similar for
both the generic and DCC case and the efficiency factors
are constant and independent of multiplicity and other
kinematic parameters.

III. EFFECT OF MIS-IDENTIFICATION

There are additional complications in realistic scenar-
ios that have not been taken care of in the above pre-
scriptions. The study of γ − ch correlation is often com-
plicated by mis-identification of charge particles by pho-
tons and vice versa. High energy depositions of charged
hadrons can form a cluster in photon detector. Similarly
photon conversion can show up as single or doubly de-
tected tracks or clusters in charge particle detectors. In
both the cases the observables are affected. Following the
approach of the application of cluster decay theorem dis-
cussed in previous section, we obtain the modified forms
of the generating functions

gch(zch, zγ) = (1− εch − εch,γ) + εchzch + εch,γzγ

g0(zch, zγ) = ((1− εγ − εγ,ch − εγ,2ch) + εγzγ

+ εγ,ch zch + εγ,2ch z
2
ch

)2
, (19)

where we view neutral pions decay with 100% “efficiency”
into two photons which themselves “decay” with a few
modes. εch and εγ are the efficiencies of detecting a
charged particle and a photon, respectively. εch,γ is the
probability of charged particle being identified as a pho-
ton cluster and εγ,ch, εγ,2ch are the probability of a pho-
ton being identified as one and two charged particles,
respectively. Substituting these in eq.5 one can calculate
factorial moments folded with the contamination effect.
The factorial moments are expressed as,

f10 = 〈(1− f)εch + 2f (εγ,ch + 2εγ,2ch)〉 〈N〉
f01 = 〈(1− f)εch,γ + 2fεγ〉 〈N〉
f11 = 〈N(N − 1) ((1− f)εch + 2f (εγ,ch + 2εγ,2ch))

× ((1− f)εch,γ + 2fεγ) + 2Nfεγ (εγ,ch + 2εγ,2ch)〉

f20 =
〈
N(N − 1) ((1− f)εch + 2f(εγ,ch + 2εγ,2ch))

2

+ 2Nf
(
2εγ,2ch + (εγ,ch + 2εγ,2ch)2

)〉
f02 =

〈
N(N − 1)((1− f)εch,γ + 2fεγ)

2
+ 2Nfε2

γ

〉
(20)

This would lead to very complicated (see appendix-X B)
dependencies of ∆νdyn and rm,1 on various efficiency fac-
tors. However a relatively simple form can be obtained in
the limit of small values of εγ,ch and εγ,2ch. So in case of
small photon conversion in the charged particle detector
one can express ∆νdyn as

∆νγ−ch
dyn =


〈
(1− f)2

〉
〈1− f〉2

+

〈(
(1− f)

εch,γ
εγ

+ 2f
)2
〉

〈
(1− f)

εch,γ
εγ

+ 2f
〉2 − 2

〈
(1− f)

(
(1− f)

εch,γ
εγ

+ 2f
)〉

〈1− f〉
〈

(1− f)
εch,γ
εγ

+ 2f
〉
 〈N(N − 1)〉

〈N〉2
(21)

where the the generic value of νdyn in this case will be
given by

νγ−ch
dyn

∣∣∣
generic

=
1

2 〈f〉 〈N〉
(
εch,γ
εγ

+ 1
) (22)

which is small number for large values of 〈N〉. The robust
variable rm,1 can be represented as

rγ−ch
m,1 =

〈
(1− f)m

(
(1− f)

εch,γ
εγ

+ 2f
)〉
〈1− f〉

〈(1− f)m+1〉
〈

(1− f)
εch,γ
εγ

+ 2f
〉 . (23)

Unlike previous case it is not possible to eliminate the
efficiency factors in eq.21 and eq.23. So in this case if
we want to analyze the sensitivity of those variables to
x-fraction of DCC signals, we can use eq.15 to obtain the
modified forms as

∆νγ−ch
dyn =

x

5/9

1(
εch,γ
εγ

+ 1
)2

〈N(N − 1)〉
〈N〉2

rm,1 = 1− mx

m+ 1

1(
εch,γ
εγ

+ 1
) F (m,x). (24)
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FIG. 1: Sensitivity of variable rm,1 and its higher moments. The higher order shows more sensitivity to small signals of
anti-correlation.

where F (m,x) is given by eq.18. We can see that mis
identification of charged particle as photon reduces
the effective fraction of DCC events. The contami-
nation factor appears as a ratio of εch,γ/εγ keeping
the functional form of the variables (eq.16, eq.17) un-

changed. We note here that ∆νγ−ch
dyn has quadratic

dependence on contamination factor whereas r1,1 is

affected only by a linear factor. This is because ∆νγ−ch
dyn

contains an extra photon fluctuation term absent in rm,1.

IV. RESONANCE EFFECT

Resonance decays like ρ → π±γ is equivalent to ar-
tificial increase of pions and photons from generic case.
Decays like ω → π0 + π± would give rise to correlation
in the pions. Overall effect of resonance would be equiv-
alent to event-by-event fluctuation of charged or neutral
particles. The effect of resonance leading to increase in
photon and charged particle multiplicity could be consid-
ered to be equivalent to increase in efficiency of photon
and charged particle detection. For event-by event fluc-
tuations of efficiency would affect the observables, for e.g.
the variable rm,1 given in eq.14 will be modified as

rγ−ch
m,1 =

〈f (1− f)
m〉 〈1− f〉〈

(1− f)
m+1

〉
〈f〉

〈εγεmch〉 〈εch〉〈
εm+1

ch

〉
〈εγ〉

. (25)

It is difficult to conclude the behavior of the variables
from the above expressions without putting a realistic
number for the efficiencies. To study the effect of reso-
nances in a more detailed way (sec.VII, VIII) we have

used Monte-Carlo models in which resonances are in-
cluded.

V. CENTRALITY DEPENDENCE

In heavy ion collision experiment, observables are com-
monly studied with respect to the centrality which is
related to the number of participating nucleons. It is
therefore necessary that we study the nominal effect of
the superposition of nucleons on the observables. In this
section we would like to study the centrality dependence
of the γ − ch correlation using an approach based on the
“Central Limit Theorem”(CLT). Importance and appli-
cability of CLT in the context of correlation analysis in
heavy ion collision has previously been discussed in de-
tail in ref.[27]. In a heavy ion collision, let us consider
NS numbers of identical sources are responsible for parti-
cle production. If Ni is the number of particles produced
from i-th source, any variable V (Ni) will have a distribu-
tion identical for all the sources. If we assume heavy-ion
collision to be a linear superposition of many identical
nucleon-nucleon collisions, under identical source approx-
imation we can calculate the centrality dependence of the
variable using CLT [28]. From CLT it follows that mean
and variance of multiplicity would be given by

M(N) = M

(
NS∑
i

Ni

)
=

NS∑
i

M(Ni) = NSM(Ni)

σ2(N) = σ2

(
NS∑
i

Ni

)
=

NS∑
i

σ2(Ni) = NS σ
2(Ni). (26)
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Since we have already assumed a collection of identical
sources we can take M(Ni) = α and σ2(Ni) = β to be
constant numbers same for all emission sources. So from
CLT we have the dependence M(N) = αNS and σ(N) =
β
√
NS . In our case N could be total number of produced

pions, photons or charged particles. In that case similar
argument also holds for M(Nπ, Nch or Nγ) ∼ απ,ch,γNS
and σ(Nπ, Nch or Nγ) ∼ βπ,ch,γ

√
NS where (απ, βπ),

(αch, βch) and (αγ , βγ) are sets of constants correspond-
ing to pion, charged particle or photon multiplicities for
identical sources respectively.

Let us assume N to be equal to the total number of
produced pions where we have Nπ = aNch + bNγ . Where
a and b are the fraction of charged pions and decay pho-
tons respectively1. The from eq.26 the mean and variance
of total numbers of pions would give

〈Nπ〉 = απNS

σ2(Nπ) =
(〈
N2
π

〉
− 〈Nπ〉2

)
∼ β2

πNS〈
N2
π

〉
=
〈
(aNch + bNγ)2

〉
∼ β2

πNS + α2
πN

2
S (27)

and if we express pion multiplicity in terms of charged
and photons we get,〈

N2
ch

〉
∼ β2

chNS + α2
chN

2
S〈

N2
γ

〉
∼ β2

γNS + α2
γN

2
S

〈NchNγ〉 ∼ β2
γ−chNS + α2

γ−chN
2
S (28)

where αγ−ch and βγ−ch are constants expressible2 in
terms of a, b, απ,ch,γ and βπ,ch,γ . Using above relations,
eq.1 and eq.2 we can calculate the centrality dependence
of the observables. For νdyn one has

νγ−ch
dyn ∼ A +

B

NS
≡ A′ +

B′√
〈Nγ〉 〈Nch〉

(29)

which is in fact the centrality dependence of all three
terms in eq.1. Here we note that the constants A′ and
B′ (or A and B) could be either positive or negative
depending on which term in eq.1 is dominant. The vari-
able ∆νdyn would have the similar centrality dependence
which is obvious from the form of eq.13. In heavy ion
collisions, number of source participating in particle pro-
duction can also be assumed to be proportional to num-
ber of participants (NS ∼ Npart) of the collision. In that

case νγ−ch
dyn is expected to show a scaling behavior of the

form A + B/X with X being either observed multiplic-
ity or a Galuber variable Npart. In case of experimental
measurements it is more convenient to express fluctua-
tion variables in terms of measured multiplicities.

1 Note that Nπ = Nπ+ +Nπ− +Nπ0 ≈ Nch+0.5Nγ ; a ∼ 1, b ∼ 0.5.
2 it can be shown that α2

γ−ch=
(
α2
π − a2α2

ch − b
2α2
γ

)
/2ab, β2

γ−ch=(
β2
π − a2β2

ch − b
2β2
γ

)
/2ab

Based on similar approach one can comment on the
centrality dependence of the robust observable. In the
most general case one can have

rm,1 =

m∑
p
αpN

p
S

m∑
p
βpN

p
S

(30)

which shows identical dependence in both numerator and
denominator. So according to CLT, behavior of rm,1 with
multiplicity depends on the coefficients αp and βp. How-
ever it must be noted that breakdown of scaling from
CLT would have several implications. The picture of
identical source emission may not be valid in the case
for formation of domains of DCC. In that case one might
observe deviation from proposed scaling.

VI. EFFECT OF MIXTURE OF PION SOURCES

In this section we would like to discuss the effect on
the observables when event-wise pion sources are inde-
pendent of each other. So far we have considered that
in a DCC event, all the pions detected in a given cover-
age are coming from the decay of the domains of DCC.
This assumption might be valid when the detector cov-
erage is same as the combined size of DCC domains.
The realistic scenario is when the size of the domain of
DCC is smaller than the detector coverage. Also as men-
tioned before that DCC pions are dominantly from lower
part of the momentum distribution. In both the cases
of considering bulk multiplicity for correlation analysis,
the candidates carrying actual signal would be a frac-
tion total pions considered. Let us consider a case when
x-fraction of events analyzed has DCC like fluctuation
carried by y-fraction of total pions. So for DCC pions
we have 〈N〉D = y 〈N〉 and for generic pions we have
〈N〉G = (1− y) 〈N〉, N being the total number of pions.
The probability to find ND pions carrying DCC signal
will be given by P (ND, N, y) = NCND y

ND (1− y)N−ND ,
which would give 〈N(N − 1)〉D = y2 〈N(N − 1)〉. Now
in this case the generating function of eq.4 will be re-
placed by

Gobs = x′GDCC + xGDCCGgeneric + (1−x−x′)Ggeneric
(31)

in which we view cases with 100% DCC production (x′

fraction of events), 100% generic production and a mix-
ture of two as three “decay modes” of a super clus-
ter. Here GDCC has the probability distribution P(f) =
1/2
√
f and Ggeneric has P(f) = δ(f − 1/3). Since we

think the case of 100% DCC production is the least real-
istic, in the following we simplify our expression by tak-
ing x′ = 0. Now different factorial moments will become
functions of x and y (see appendix-X C for detail). In
this case the observables are modified accordingly , for
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FIG. 2: Multiplicity dependence of observables r1,1 and ∆νdyn as predicted from different models. The curves represent the
results from different ensembles of Boltzmann gas of pions from eq.36 and eq.38 as described in the text. The markers are from
different Monte-Carlo models. The error-bars are statistical.

∆νdyn from eq.13 will be given by

∆νdyn =
x

5/9
y2 〈N(N − 1)〉

〈N〉2
(32)

which consistent with the expression eq.16 for y = 1 case.
For Poisson like parent distribution ∆νdyn can be ex-
pressed as

∆νdyn =
x

5/9
y2. (33)

We note here that ∆νdyn still shows the proportionality
with the fraction of DCC events x. And the interesting
fact is that quadratic dependance on y means ∆νdyn is
more sensitive to the change of fraction of pions carrying
DCC-like signals.

In similar approach we can express r1,1 to be

r1,1 =
5 − 2xy2

5 + xy2
. (34)

This expression is consistent with the approximate ex-
pression of r1,1 given in Ref.[29] for small values of x. The
higher order moments will have corrections from higher
orders of y which are smaller. To the lowest order ap-
proximation, the expression given by eq.17 is still valid
with fraction x replaced by xy2.

rγ−ch
m,1 ≈ 1− mxy2

(m+ 1)
F (m,xy2) (35)

A functional fit of rm,1 with m to experimental data by
the above expression can restrict the contours of x and
y.

VII. MODEL PREDICTION

In this section we would like to study the behavior of
observables from different models available to describe
heavy ion data. There are theoretical predictions of
isospin fluctuation for a statistical system of pions[30, 31].
It can be shown that a system of Boltzmann gas of pions
in the grand canonical ensemble (GCE), gives 〈Nπ0〉 =
〈Nπ±〉 = ζ and one finds mean-square of pion multiplic-
ity and charge-to-neutral pion correlation to be related
to mean multiplicities as

〈
N2
π0

〉
= 〈Nπ0〉+ 〈Nπ0〉2〈

N2
π±

〉
= 〈Nπ±〉+ 〈Nπ±〉2

〈Nπ0Nπ±〉 = 〈Nπ0〉 〈Nπ±〉 (36)

where ζ is the single particle partition function3. In
ref[31] it was shown that for an ideal scenario where one
assumes the total isospin of the system to be zero, above
mentioned relationships will become complicated. An en-
semble of the total isospin I=0 as shown in [31] would
give

〈Nπ0〉 = 〈Nπ±〉 =
ζ2

3
+
ζ3

6
(37)

3 ζ = V
2π

∞∫
0

p2dp exp

(
−
√
p2+m2

T

)
, V,m and T begin volume, pion

mass and temperature of the system
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FIG. 3: Prediction of variables from different models.

and in that case the mean-square pions multiplicities are
modified as 〈

N2
π0

〉
≈ 〈Nπ0〉+

ζ2

3
+
ζ4

15〈
N2
π±

〉
≈ 〈Nπ±〉+

ζ4

10
. (38)

We can generalize this result and apply in case of our
observables of γ − ch correlation. The dependance on ζ
can be eliminated and final observables can be expressed
in terms of experimentally observed quantities like mea-
sured multiplicity (say

√
〈Nch〉 〈Nγ〉). In this case one

has 〈Nγ〉 = 2 〈Nπ0〉 and 〈Nch〉 = 〈Nπ+ +Nπ−〉 =
2 〈Nπ±〉 . Also for decay of neutral pions we have used
the relation σ2

γ ≈ Cσ2
π0 , and we have used C=2 for our

calculation 4. Choice of C mostly effects the observables
at low multiplicity. So one can express the mean-square
multiplicity to be〈

N2
γ

〉
= 4

〈
N2
π0

〉
,
〈
N2

ch

〉
= 2

〈
N2
π±

〉
+ 2 〈Nπ+Nπ−〉

(39)
and the correlation term will be given by 〈NγNch〉 =
4 〈Nπ0Nπ±〉. Now we have

f20

f2
10

=
1

2

(
〈Nπ±(Nπ± − 1)〉
〈Nπ±〉2

+
〈Nπ+Nπ−〉
〈Nπ±〉2

)
f02

f2
01

=
1

2

(
〈Nπ0(Nπ0 − 1)〉
〈Nπ0〉2

+ 1

)
f11

f10 f01
=
〈Nπ0Nπ±〉
〈Nπ0〉 〈Nπ±〉

(40)

So using eq.36, eq.38 and eq.40 we can estimate νγ−ch
dyn

and r1,1 for GCE and I=0 systems. Using eq.13 we

can estimate ∆νγ−ch
dyn . For GCE we get from eq.36

and eq.40, νdyn = 1/
√
〈Nch〉 〈Nγ〉, which gives correct

multiplicity dependence as predicted from CLT. So we

have ∆νγ−ch
dyn = 0 for GCE. The system of I=0 gives

∆νγ−ch
dyn ∼ −0.98/

√
〈Nch〉 〈Nγ〉 which also agrees with

the CLT predictions as shown in fig.2(b). In case of GCE

r1,1 is predicted to be 2/(1 + 1/
√
〈Nch〉 〈Nγ〉) which be-

comes 1 for large values of multiplicity. For system of
I=0, r1,1 ∼ 1 for all values of

√
〈Nch〉 〈Nγ〉 as shown in

fig.2(a).
We have also estimated various observables and their

centrality dependence using different monte-carlo event
generators like HIJING[32], AMPT [33] and UrQMD[34]
for top RHIC energy. For our calculation we choose one
unit of rapidity in forward direction 5 but no cut off has
been applied on transverse momentum. We do the cen-
trality selection based on putting cuts on impact parame-
ter following Glauber model calculation. Fig.2 shows the
centrality dependence of the observables. The variable
r1,1 shows flat centrality dependence within error bars.
As shown in fig.2(a) and fig.2(b), the results from dif-
ferent monte-carlo models are consistent with each other
and the values from the statistical model of Boltzman
gas are consistent with other models towards higher mul-
tiplicity. At lower multiplicities they have qualitatively
different nature probably due to presence of various other
effects in the monte-carlo models.

4 For Poissonian case σγ =
√
〈Nγ〉 =

√
2 〈Nπ0 〉 =

√
2σπ0 gives

C=2 ; incase one detects all photons from π0 one has a maximum
value of C=4 which is not in accordance with CGE picture where
limited phase space of a system is probed.

5 both STAR and ALICE experiments has the setup of simultane-
ous measurements of charged and photon in one unit of rapidity.
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Fig.3(a) shows the variation of rm,1 with its order m.
Results from all the model are consistent with the generic
case of pion production. Fig.3(b) shows the centrality
dependance of νdyn and ∆νdyn predicted from HIJING.
For comparison of centrality dependance predicted from
CLT, we have fitted the points with functional form of
A + B/

√
〈Nch〉 〈Nγ〉. This yields a value of A ≈ 5 ×

10−5 and B = −0.6 for ∆νdyn. We also note here that
the sign of ∆νdyn is negative for low multiplicity. This
means that the Raw HIJING includes some intrinsic γ−
ch correlation making the last term of eq.11 to dominate
over individual fluctuation. This can be attributed to the
resonance decays present in HIJING model. For DCC
like signal sign of ∆νdyn should become positive for all
centralities.

VIII. DCC MODEL

We have tried to implement DCC like anti-correlation
signals in HIJING events. For a given event we changed
the neutral pion fraction to follow 1/2

√
f like distribution

by flipping π0 to π±. And finally we decay the neutral
pions to photons. In the process of flipping we make sure
that the charge and isospin conservations are maintained.
Fig.4 shows the f -distribution after the implementation

Entries  16000

f
0 0.2 0.4 0.6 0.8 1

P
(f

)

10

2
10

3
10

4
10

Entries  16000

HIJING + DCC

AuAu 200 GeV

DCC

GEN

FIG. 4: Histograms showing distribution of neutral pion frac-
tion for generic and DCC events from HIJING

of DCC in HIJING. For generic event the neutral pion
fraction is peaked at 1/3 and for DCC events it has a
long tail. Since the variation of DCC like domain forma-
tion with rapidity and azimuthal angle is not known, we
perform this flipping for all the particles. This produces
1/2
√
f like distribution over all phase space. To make

the scenario more realistic we do the calculation of the
final variables using total number of detected photons
and charged particles rather than considering only pions.
Other dominant sources of photons and charged parti-
cles include η, charged kaons and protons respectively.
It is difficult to extract the fraction of primordial pions
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(a)Variation of r1,1 with multiplicity
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(b)Variation of νdyn with multiplicity

FIG. 5: Multiplicity dependence of observables r1,1 and νdyn
as predicted from DCC implemented HIJING model. Here
Nch and Nγ denotes the mean multiplicities of charged parti-
cles and photons for various centralities. The gray band shows
the statistical error in model calculation.

on which the DCC-like probability distribution could be
implemented. HIJING has minijet like environment in
which the production mechanism are “string fragmenta-
tion” and the abundance of particles are weighted by the
spin giving large fraction of pions coming from decay of
resonances. The primordial pions coming directly from
string fragmentation are much smaller. Alternative envi-
ronment like hydro models where the massive resonances
are exponentially suppressed would give large fraction of
soft pions. The difference between the two models of
string fragmentation and hydro is recently contested in
ref.[35]. We therefore randomly choose pions produced
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in HIJING events, treat them to be thermal and im-
plement 1/2

√
f distribution. Fig.5 shows the central-
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(a)Value of rm,1 with m for various fraction of DCC
events. The solid markers are when Nch and Nγ

includes all the charged particles and photons and the
hollow markers are when only pions are source of

charged particles and photons. The curves are
estimations from eq.17 and points are from DCC

implemented HIJING.
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FIG. 6: Sensitivity of rm,1 to DCC like signals.

ity dependance of the two observables and their sensi-
tivity for different fraction of DCC events. r1,1 shows
almost flat dependance on multiplicity and we also find
similar dependance for all higher moments of rm,1. Ab-
solute values of r1,1 are consistent with the prediction
(r1,1 = (5−2x)/(5+x)) from eq.17. For higher fraction of
DCC the centrality dependance has slight non-monotonic

behavior. This is also seen in ∆νdyn. As expected from
eq.16, the values of ∆νdyn show proportionality with the
fraction of DCC events. The absolute values of ∆νdyn
are also very close to ≈ x/(5/9) as predicted in eq.16.
The centrality dependence causes ≈ 15% variation of the
values of most central to peripheral events for ∆νdyn.
Fig.6(a) shows that the variation of rm,1 with m. The
results from model match the theoretical curve (eq.17)
when one considers only pions as source of charged par-
ticles and photons, however when all other sources are
considered the results are off towards lower side. A more
detailed study of the sensitivity to fraction of DCC pions
is shown in fig.6(b). We have shown the sensitivity of
rm,1 with the fraction of detected pions carrying DCC-
signals. In fig.6(b) we also plot the curves obtained from
eq.35. The effect of resonances present in HIJING seems
to be resulting in reduced sensitivity of rm,1 for lower
fraction of DCC pions.

Scenarios ∆νγ−ch
dyn rγ−ch

m,1

Generic pion production 0. 1

GCE for Boltzman 0. ∼1 (m=1,

pion gas higher multiplicity)

System of total I = 0 −0.98√
〈Nch〉〈Nγ〉

1 (m=1)

HIJING, AMPT negative 1

UrQMD (resonances)

DCC (anti-correlation) ≈ x
5/9

y2 ≈ 1− mxy2

(m+1)
F (m,xy2)

TABLE I: Summary of our estimation of observables ∆νγ−ch
dyn

and rγ−ch
m,1 under different scenario relevant to heavy-ion col-

lisions. ∆νγ−ch
dyn is either 0 or negative except for DCC case

which gives positive value depending on the fraction x and
y. rγ−ch

m,1 shows a particular functional dependance on m for
DCC case which is distinct from all other scenarios.

IX. SUMMARY

We have developed a procedure for generalization of
methods for studying γ-charge correlation in heavy-ion
collisions. One of the primary motivations for this study
could be the search for DCC-like anti-correlation sig-
nals relevant to the ongoing heavy ion program at RHIC
and LHC. We have discussed the robustness of two
variables ∆νdyn and rm,1 and have studied their cen-
trality(multiplicity) dependance. We discuss estimation
of those observables from different models relevant to
heavy-ion collisions which do not include the physics of
DCC. DCC-like anti-correlation signals are expected to
be carried by pions in limited kinematic range in both
co-ordinate and momentum space. Relevant to such con-
text, the sensitivity of the variables have been studied
with the fraction of DCC type events(x) and the event
wise fraction of DCC pions(y). We have also developed a
Monte-Carlo model where DCC domains have been im-
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plemented in HIJING to see the sensitivity of those vari-
ables with DCC signals. Our results show that the model
predictions of the variables are consistent with the the-
oretical predictions using generating function approach.
We have implemented the detector effects like efficiency
of detection, mis-identification to study the effect on ob-
servables. The mis-identification factor reduces the ef-
fective signal strength for which an approximate expres-
sion has been derived in generating function approach.
rm,1 has been found to be more robust towards mis-
identification of photons as compared to ∆νdyn. The res-
onance decay can induce correlation which can suppress
the anti-correlating DCC signal. A quantitative idea of
resonance can be obtained from Monte Carlo model that
implements DCC in which we can vary the number of
DCC candidates and see the sensitivity of rm,1.

We have seen that the variable ∆νdyn is highly sensi-
tive to the fractions x and y. In a given centrality ∆νdyn
is proportional to xy2. For generic case of particle pro-
duction from CLT, it is predicted to be inversely propor-
tional to multiplicity. The sign of ∆νdyn would indicate
the dominance of correlation over anti-correlation.

We also discuss the applicability of the Minimax vari-
able rm,1 for heavy-ion collisions. rm,1 seem to be flat
with centrality. Higher orders of rm,1 shows larger sen-
sitivity x and can have contribution up to ym+1. A sim-
plified form of the functional dependance of rm,1 with m
has been calculated in generating function approach for
lowest order of y2. This would be useful to restrict the
signal strength xy2 by fitting the experimental data.
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X. APPENDIX

A. Mixed events

While analyzing data sample to calculate νγ−ch
dyn , one

can estimate the generic term by doing a mixed event
analysis. A simple method we prescribe is to take to-
tal number of photons and total number of charge par-
ticles from different events would only effect correlation

terms like f11 in νγ−ch
dyn keeping other factorial moments

unchanged. In such case we must have

f11

f10 f01

∣∣∣∣
mixed

≈ 〈N(N − 1)〉
〈N〉2

. (41)

Taking a particular combination of factorial moments we
can calculate the generic value for νdyn we need to cal-
culate ∆νdyn For example one can show that(

3
f11

f10 f01
− 4

f20

f2
10

+
f02

f2
01

)∣∣∣∣
mixed

=
1

2 〈f〉 〈N〉
(42)

which is equal to νgenericdyn . But in case of contamination
effects present in the data sample one cannot apply this
simple method since in that case the efficiency terms can-
not be eliminated from νdyn. A full GEANT simulation
with a known event generator which doesn’t include the
physics of DCC is suggested to estimate the generic value
of νdyn.

B. Mis-identification

In case of mis-identification of photon as charge parti-
cles and vice-versa the fractorial moments are modified
as given in eq.20. The observables ∆νdyn and rm,1 will
be given by

∆νγ−ch
dyn =

〈
((1− f)εch + 2fεγ,ch)

2
〉

〈(1− f)εch+2fεγ,ch〉2
+

〈
((1− f)εch,γ + 2fεγ)

2
〉

〈(1− f)εch,γ + 2fεγ〉2
−2
〈((1− f)εch+2fεγ,ch) ((1− f)εch,γ+2fεγ)〉
〈(1− f)εch+2fεγ,ch〉 〈(1− f)εch,γ+2fεγ〉

 〈N(N − 1)〉
〈N〉2

(43)

rm,1 =
〈N(N − 1) ((1 − f)εch + 2fεγ,ch)

m
((1 − f)εch,γ + 2fεγ) + 2Nfεγεγ,ch〉 〈(1 − f)εch + 2fεγ,ch〉〈

N(N − 1) ((1− f)εch + 2fεγ,ch)
m+1

+ 2Nf
(

2εγ,2ch + ε2
γ,ch

)〉
〈(1− f)εch,γ + 2fεγ〉

(44)

In case of εγ,ch = εγ,2ch = 0 one recovers eq.21 and eq.23. C. Pion mixture

In case of x-fraction of DCC events containing y-
fractions of pions carrying DCC signal, different factorial
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moments are given by

f10 = 〈1− f〉 εch 〈N〉
f01 = 〈f〉 2εγ 〈N〉

which is same as the case corresponding to y = 1. But
higher order moments are modified to be

f11 =
(

2xy(1− y) 〈f〉 〈1− f〉 〈N〉2 + ((1− xy(2− y)) 〈f(1− f)〉G + xy2 〈f(1− f)〉D) 〈N (N − 1)〉
)

2εγ εch

f20 =
(

2xy(1− y) 〈1− f〉2 〈N〉2 + ((1− xy(2− y))
〈
(1− f)2

〉
G

+ xy2
〈
(1− f)2

〉
D

) 〈N (N − 1)〉
)
ε2

ch

f02 =
(

2xy(1− y) 〈f〉2 〈N〉2 + ((1− xy(2− y))
〈
f2
〉
G

+ xy2
〈
f2
〉
D

) 〈N (N − 1)〉
)

4ε2
γ + 2ε2

γ 〈f〉 〈N〉

(45)

which gives

r1,1 =
5− 2xy2

5 + xy2

r2,1 =
35 − xy2(21− 4y)

35 + xy2(21− 2y)
(46)

and so on. The general formula for rm,1 is given by

rm,1 = 1− mxy2

(m+ 1)
F (m,xy2) +O(xy3) · · · (47)

in which rm,1 will have contribution up to xym+1. Since
y ≤ 1 higher order contribution of y are smaller and the
approximate form of the above expression would be given
by

rm,1 ≈ 1− mxy2

(m+ 1)
F (m,xy2) (48)

where F (m,xy2) is given by eq.18.
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