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Abstract 

Quasielastic (anti) neutrino-nucleon scattering is a process used by many 

experiments in studying neutrino oscillations.  The extracted axial mass parameter 

has shown discrepancy amongst different experiments assuming a dipole model 

for the axial form factor.  We conduct a model independent extraction of the axial 

mass parameter from MiniBooNE data for anti-neutrino scattering on 12C and 

mineral oil.  A model designed to include the hydrogen contribution in mineral oil 

scattering is presented.  We find the value for mA to be consistent from carbon to 

mineral oil data and both in good agreement with the neutrino scattering result; 

mA, carbon = 0.85−0.06
+0.13 GeV, mA, min. oil = 0.84−0.04

+0.15 GeV and mA, neutrino result = 

0.85−0.07
+0.22.  These values differ greatly from the dipole extracted axial mass; 

mA
dipole

carbon = 1.31−0.05
+0.04 GeV and mA

dipole
min. oil = 1.27−0.04

+0.03 GeV.   
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1 Introduction 

Experiments of the past few decades have revealed evidence of a quantum mechanical 

phenomenon known as neutrino oscillations.  In this process, a neutrino with specific flavor 

(electron, muon, or tau) can later be measured to have a different flavor.  The probability of such 

an oscillation varies periodically as the neutrino propagates through space.  The observation of 

neutrino oscillations implies that neutrinos have non-zero mass contrary to the Standard Model 

of particle physics.  The 2015 Nobel Prize in physics was awarded to Takaaki Kajita and Arthur 

B. McDonald for their discovery of neutrino oscillations.  Understanding this phenomenon could 

reveal physics beyond the Standard Model.   

Neutrino oscillation experiments need the charged current quasielastic (anti) neutrino-nucleon 

scattering cross section as an input.  In CCQE scattering, a(n) (anti) neutrino scatters from a 

nucleon to produce a lepton of the same flavor as the neutrino.  We consider data from 

MiniBooNE [1], an experiment at Fermilab that performed the following scattering processes, 

νμ + n → μ- + p,     (1) 

ν̅μ + p → μ+ + n.     (2) 

The MiniBooNE collaboration has provided measurements of (anti)-muon-neutrino CCQE 

double-differential cross section in terms of muon angle and energy.  This paper discusses anti-

neutrino-proton scattering (2) in particular.  The MiniBooNE experiment directs a proton beam 

from the Fermilab Booster at a beryllium target.  Inelastic scattering emits several particles 

which are redirected by a magnetic focusing horn and sent into an absorber.  At this point, the 

neutrinos are filtered through to the detector.  The detector is a spherically shaped tank filled 

with 800 tons of mineral oil and lined with 1,280 photomultiplier tubes. 

The axial mass parameter, mA, is extracted from fitting experimental data, and then the resultant 

value is used as a means of comparison.  This parameter is commonly found in the dipole ansatz 

of the form factor of the nucleon, 

FA
dipole(q2) =

FA(0)

[1−
q2

(mA
dipole)2

]2
.    (3) 

Since FA(0) is known from neutron decay, equation (3) provides a simple method for extracting 

mA
dipole.  Recent evidence shows differing results for the axial mass parameter amongst these 

neutrino oscillation experiments.  World averages recorded by Bernard et al. [2] and the 

NOMAD collaboration [3] report values for mA
dipole close to 1.0 GeV.  MiniBooNE [4], on the 

other hand, reports mA
dipole = 1.35±0.17 GeV.  Furthermore, K2K SciFi [5], K2K SciBar [6], and 

MINOS [7] collaborations give a significantly higher value than the world average.  The axial 

mass parameter is a fundamental property of the nucleon regardless of the beam energy or 

nuclear target.  Hence, it is critical to obtain consistency amongst experiments. 

The parameterizations of the dipole form factor are overly constrained since (3) depends on one 

parameter.  Additionally, the axial mass parameter in (3) is not well-defined since the true form 

factor of the proton does not necessarily have a pure dipole behavior.  Forcing precise 

measurements to fit this form factor will lead to discrepancy in mA
dipole as a result of different 



3 
 

ranges of q2.  We define the axial mass parameter in terms of the form factor slope at q2 = 0: 

mA ≡ √
2FA(0)

F′A(0)
.  In contrast to the dipole model, we apply model-independent z expansion to the 

axial-vector form factor.  The use of z expansion introduces more parameters in the axial-vector 

form factor allowing more freedom in fits.  Further details of this method can be found in [8], [9] 

and [10].  The anti-neutrino-nucleus scattering has two levels: the interaction of the anti-neutrino 

and the nucleus, or the anti-neutrino and a nucleon.  To extract mA, one must sufficiently 

describe both the nuclear-level interaction and the nucleon-level interaction.  In the past, 

theoretical studies have addressed nuclear modeling, but all used the dipole form factor 

mentioned above.  The nucleon-level interaction must be resolved before nuclear physics effects 

are considered.  Consequently, we adopt the widely-used Relativistic Fermi Gas (RFG) model of 

Smith and Moniz [11] in this analysis.  We vary the nucleon-level interaction by applying the 

dipole model and the z expanded axial form factor.  This will isolate the contribution of the 

axial-vector form factor. 

The paper is structured as follows.  In section 2, we utilize methods of analyticity in our model 

independent description of the form factor, FA.  In Section 3, we describe the chi-squared 

minimization fit used to extract mA.  In Section 4, results are analyzed.  Lastly, in section 5, a 

final comparison of the results is made and future work in this area is discussed. 

2 Z Expansion 

2.1 Axial-Vector Form Factor 

The nucleon matrix element of the Standard Model weak charged current is 

〈𝑝(𝑝′)|𝐽𝑊
+𝜇|𝑛(𝑝)〉 ∝ �̅�(p)(p’){γμF1(q

2)+ 
𝑖

2𝑚𝑁
σμνqνF2(q

2)+γμγ5FA(q2)+ 
1

𝑚𝑁
qμγ5FP(q2)}u(n)(p),  

 (4) 

where qμ = p’μ – pμ, and we have enforced time-reversal invariance and neglected isospin-

violating effects.  The vector form factors, F1 and F2, can be related by isospin symmetry to the 

electromagnetic form factors measured in electron-proton scattering.  Additionally, the impact of 

FP is suppressed by powers of the small lepton-nucleon mass ratio.  This leaves FA as the only 

non-constrained form factor.   

In the MiniBooNE energy range, the axial form factor is the dominant contribution to the cross 

section.  The most common way of extracting mA is to replace the axial-vector form factor with 

the dipole ansatz, FA
dipole.  However, this procedure suffers from the functional dependence of 

FA
dipole (q2) being poorly constrained at relevant neutrino energies.  Alternatively, we use 

applications of analyticity on the axial-vector form factor to extract mA. 

2.2 Analyticity 

We write the form factor using the dispersion relation from [8] and [9], 

FA(t) =
1

π
∫

Im FA(𝑡′+𝑖0)

𝑡′−𝑡
ⅆt′

∞

tcut

,     (5) 
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where t ≡ q2 and the integral starts at the three-pion cut, tcut = 9m2
π.  FA(t) is complex 

differentiable in the region outside the cut [tcut, ∞] lying on the real axis.  This implies that FA(t) 

is analytic everywhere outside [tcut, ∞]. 

We map the domain of analyticity onto the unit circle via 

z(t, tcut, t0) =
√tcut−t−√tcut−t0

√tcut−t+√tcut−t0
,    (6) 

where t0 is a free parameter representing the point mapping onto z = 0 (as seen in figure 1).  Any 

analytic function in this domain will converge to its own power series.  Therefore, the form 

factor can be written as a power series in the new variable, 

FA(q2) = ∑ akz(q2)k∞

k=0
.     (7) 

The coefficients multiplying zk are bounded in size which guarantees convergence of the series.  

The coefficients are given by 

a0 =
1

π
∫ Re FA[t(θ) + i0] ⅆθ

π

0
= FA(t0),    (8) 

ak≥1 = −
2

π
∫ Im FA[t(θ) + i0]sin(kθ) ⅆθ

π

0
=

2

π
∫

1

t−t0
√

tcut−t0

t−tcut
Im FA(t)sin[kθ(t)] ⅆt

∞

tcut

, (9) 

where 

t = t0 +
2(tcut−t0)

1−cosθ
≡ t(θ).     (10) 

A major advantage of this method is that the expansion coefficients can be bounded using 

knowledge of Im FA.  With the z expansion, only a finite number of parameters are necessary to 

describe the form factor with a given precision.  Throughout the paper, bounds of 5 and 10 are 

used on the expansion coefficients, that is, |ak| ≤ 5 and |ak| ≤ 10.  A more detailed explanation 

of z expansion and the choice of bounds can be found in [8].   

3 Extraction of the axial mass parameter 

The mineral oil in the MiniBooNE detector is composed of CnH2n+2, n ~ 20.  We must consider 

two types of protons for the scattering; the proton bound in carbon and the free proton in 

Figure 1: Conformal mapping of the cut plane to the unit circle. 
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hydrogen.  MiniBooNE has released a mineral oil data set which includes scattering from all 

protons.  Additionally, MiniBooNE has released a carbon data set excluding scattering from free 

protons.  The flux-integrated double-differential cross section per nucleon is given by 

(
d2σ

dTμdcosθμ
)

i

=
∑ Uij(dj−bj)

j

(ΔTμ)
i
(Δcosθμ)

i
ϵiΦN

,    (11) 

where dj refers to data, bj the background, Uij is an unfolding matrix connecting the reconstructed 

variable index j to the true index i, ϵi is the detection efficiency, ΔT𝜇 and Δcosθ𝜇 the respective 

bin widths, Φ the integrated ν̅μ exposure, and N the number of proton targets in the volume 

studied.  In obtaining the carbon data set, ν̅μ hydrogen events are included in the background 

term bj in (11) whereas the other terms in the calculation based on signal definition are now 

based only on ν̅μ CCQE events involving protons bound in carbon [1, 12]. 

We compare axial mass results as extracted from both data sets using the dipole form factor and 

the z expanded form factor.  Let mA
dipole refer to the axial mass as extracted from using the dipole 

model (3) whereas mA refers to the axial mass as extracted as a slope of FA.  When using the 

dipole model, mA
dipole ≡ mA.  All procedures reported in this paper apply the Relativistic Fermi 

Gas model [11].   

We calculate the theoretical prediction of the cross section with 

dσnuclear

dEμdcos θμ
 = 

GF
2❘P

⇀

μ❘

16π2mT
{2(Eμ − |P

⇀

μ|cos θμ)W1 + (Eμ + |P
⇀

μ|cos θμ)W2 −
1

mT
[(Eμ − |P

⇀

μ|cos θμ)(Eν +

Eμ) − mμ
2]W3 +

mμ
2

mT
2 (Eμ − |P

⇀

μ|cos θμ)W4 −
mμ

2

mT
W5},   (12) 

where Eμ is the muon energy, P
⇀

μ is the muon momentum, cosθμ is the muon direction, and the Wi 

are given in [8].  Next, we integrate over the normalized ν̅μ flux from Table XI of [1] to give the 

flux-averaged cross section.  Assuming carbon nucleus scattering, the result is divided by 6 to 

obtain the per-proton event rate.  The corresponding experimental values of the double-

differential cross section are found in Table XIII (mineral oil) and Table XIX (carbon) from [1].  

We apply χ2 minimization to find values for mA.  The χ2 function is given by 

χ2 = Σ (σi
expt − σi

theory)Eij
−1(σj

expt − σj
theory),   (13) 

where 

Eij = (δσi)
2δij+(δN)2σiσj     (14) 

is the error matrix, σi denotes the partial cross section, δσi denotes the shape uncertainty of the 

partial cross section (Tables XIV and XX from [1]), and δN is the normalization error.  The 

uncertainty in mA is given by the Δχ2 = 1 interval.  The nucleon form factors are given in [13] 

and the relevant parameter values in [8].  We use ϵb = 0.025 GeV as was done in [8].  For the z 

expansion of FA, we let kmax = 7 in the sum (7).  This truncation does not differ significantly from 

kmax = 8, 9, and so on. 

We define a reconstructed Q2 = -q2 where 
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Q2
rec = 2Eν

recEμ − 2Eν
rec√E2

μ − m2
μcosθμ − m2

μ,  (15) 

and Eν
rec approximates the anti-neutrino energy in the nucleon rest frame, 

Eν
rec =

mNEμ−
1

2
m2

μ

mN−Eμ+√E2
μ−m2

μcosθμ

.    (16) 

4 Results 

The mineral oil is composed of carbon and hydrogen atoms, (CnH2n+2, n~20).  For anti-neutrinos, 

we must consider scattering from both bound protons in carbon and free protons in hydrogen (2).  

In section 4.1, we extract the axial mass from the carbon data.  In section 4.2, we extract the axial 

mass from mineral oil data in two manners.  First, we assume the free protons have no 

contribution in the theoretical prediction of the chi-squared function (13).  Second, we include 

the free proton’s contribution using a statistical model.  A comparison of these three 

circumstances is made in section 5. 

4.1 Carbon data 

 

Figure 2: Extracted values of mA versus Q2
max from carbon data.  Dipole model results for mA

dipole are shown by red circles; z 
expansion results with |𝐚𝐤| ≤ 5 are shown by blue squares, and z expansion results with |𝐚𝐤| ≤ 10 are shown by green 
triangles. 

Results for mA are presented in figure 2 as extracted using both the dipole form factor and z 

expanded form factor.  The coefficients, ak, are bounded in size such that |ak| ≤ 5 and |ak| ≤ 10.  

The values of mA are varied with Q2
max where Q2

rec ≤ Q2
max.  The axial mass is directly 

compared at Q2
max = 1.0 GeV2 below 

mA
dipole = 1.31−0.05

+0.04 GeV  (dipole model),  (17) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Q

2
max GeV

20.0

0.5

1.0

1.5

2.0

2.5

MA GeV
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mA = 0.85−0.06
+0.13 GeV  (z expansion with |ak| ≤ 5),  (18) 

mA = 0.72−0.05
+0.12 GeV  (z expansion with |ak| ≤ 10).  (19) 

These values are in good agreement with results from Bhattacharya, Hill, and Paz in [8].   

We must note that an issue occurred during this calculation.  For Q2
max  ≤ 0.2 GeV2 and bounds 

of |ak| ≤ 5, the chi-squared minimization gave error intervals that extended to negative values.  

Of course, this is impossible since mA cannot be negative.  Recall, with z expansion, we know 

mA ≡ √
2FA(0)

F′A(0)
 = 1.19√−

a0

a1
.  Furthermore, a0 ≡ FA(0) = -1.269.  Letting kmax = 1 gives a chi 

squared function dependent on one variable, that is, a1.  To investigate this issue, we plotted the 

chi squared function with respect to the variable a1.  The following plot (figure 3) gives insight 

into the problem. 

 

Figure 3: χ2 as a function of a1.  The error interval is determined by Δχ2 = 1.  At the χ2, χ2
min+1 intersection, a1 = 5.16.   

The magnitude of a1 at χ2 = χ2
min+1 is slightly larger than 5.  The original constraint was to set 

|𝐚𝐤| ≤ 5.  To solve this dilemma, we unbound the a1 coefficient when necessary for all further 

analysis while keeping the bounds on the other ak.  This was applied for the z expansion 

extraction with |𝐚𝐤| ≤ 5 and Q2
max ≤ 0.2 GeV2 on both carbon and mineral oil data.   

4.2 Mineral oil data 

4.2.1 Extracting mA from mineral oil data excluding contribution of free 

protons 

To form the theoretical prediction for the mineral oil, we use the method described in section 3.  

This method assumes that all protons are bound in a carbon nucleus.  Results for mA are 

presented in the same way as in section 4.1.  We compare mA at Q2
max = 1.0 GeV2 below 

mA
dipole = 1.22−0.05

+0.04 GeV  (dipole model),  (20) 
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mA = 0.77−0.05
+0.10 GeV  (z expansion with |ak| ≤ 5),  (21) 

mA = 0.68−0.07
+0.11 GeV  (z expansion with |ak| ≤ 10).  (22) 

Again, the a1 coefficient was unbounded when necessary. 

 

Figure 4: Extracted values of mA versus Q2
max from mineral oil data with no inclusion of free protons.  Dipole model results 

for mA
dipole are shown by red circles; z expansion results with |𝐚𝐤| ≤ 5 are shown by blue squares, and z expansion results 

with |𝐚𝐤| ≤ 10 are shown by green triangles. 

4.2.2 Extracting mA from mineral oil data including contribution of free 

protons 

Recall the composition of the mineral oil, CnH2n+2, n ~ 20.  Letting n = 20, we have C20H42.  With 

six protons bound in carbon and one free proton in hydrogen, we have 120 bound protons and 42 

free protons in total.  Applying these ratios, we obtain the following statistical model, 

ⅆσmineraloil =
6.00

8.06
ⅆσcarbon +

2.06

8.06
ⅆσhydrogen.   (23) 

This calculation differs by the formation of the theoretical prediction used in (13).  Instead of 

letting the entire theoretical prediction be calculated using equation (12) for a bound nucleon, we 

split the prediction into two parts.  The carbon component is done in the same manner as before 

but multiplied by a factor of  
6.00

8.06
.  For the hydrogen component, we replace equation (12) with 

the free nucleon double-differential cross section, 

dσfree

dEμdcosθμ
 = 

G2
F|Pμ

⇀
|

16π2mN
 δ(2pq + q2){2(Eμ − |Pμ

⇀

| cosθμ)H1 + (Eμ + |Pμ

⇀

| cosθμ)H2 −
1

mN
[(Eμ −

|Pμ

⇀

| cosθμ)(Eν + Eμ) − m2
μ]H3 +

m2
μ

m2
N

(Eμ − |Pμ

⇀

| cosθμ)H4 −
m2

μ

mN
H5},  (24) 

where the Hi are given in [8].  To simplify the calculation, we rewrite the delta function as 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Q

2
max GeV

20.0

0.5

1.0

1.5

2.0

2.5

MA GeV
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δ(2p ∙ q + q2) =
1

2mn−2Eμ+2cosθ√E2
μ−m2

μ

δ[Eν −
m2

μ−2Eμmn

2(Eμ−cosθ√E2
μ−m2

μ−mn)
].  (25) 

The flux averaged free nucleon cross section is then 

dσfree,avg

dEμdcosθμ
= ∫ ⅆEνf(Eν)

dσfree

dEμdcosθμ
.    (26) 

The probability density function, f(Eν), is calculated from the anti-neutrino flux from Table XI of 

[1].  By writing the delta function as (25), we can evaluate (26) as follows 

dσfree,avg

dEμdcosθμ
=

1

2mn−2Eμ+2cosθ√E2
μ−m2

μ

∙ f (
m2

μ−2Eμmn

2(Eμ−cosθ√E2
μ−m2

μ−mn)
) ∙

dσfree

dEμdcosθμ
(

m2
μ−2Eμmn

2(Eμ−cosθ√E2
μ−m2

μ−mn)
). 

 (27) 

The experimental data gives double-differential cross section in bins with respect to cosθμ and 

Eμ.  We average these bins in the theoretical component by simply evaluating at the center point 

of the bin.  Lastly, we multiply this result by the factor 
2.06

8.06
 and sum with the carbon component 

to obtain the theoretical prediction.  Now the chi-squared function is formed in a way that allows 

hydrogen free proton scattering to contribute. 

 

Figure 5: Extracted values of mA versus Q2
max from mineral oil data with the inclusion of free protons.  Dipole model results 

for mA
dipole are shown by red circles; z expansion results with |𝐚𝐤| ≤ 5 are shown by blue squares, and z expansion results 

with |𝐚𝐤| ≤ 10 are shown by green triangles.   

Results for mA are presented in figure 5.  Again, we show mA varying with Q2
max and a 

comparison at Q2
max = 1.0 GeV2 is made 

mA
dipole = 1.27−0.04

+0.03 GeV  (dipole model),  (28) 

mA = 0.84−0.04
+0.15 GeV  (z expansion with |ak| ≤ 5),  (29) 
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mA = 0.75−0.06
+0.16 GeV  (z expansion with |ak| ≤ 10).  (30) 

These results are in good agreement with the carbon results in section 4.1.   

5 Conclusion 

We have described the axial-vector form factor in a model independent manner.  This overly 

constrained form factor could be a source of discrepancy in axial mass values amongst neutrino 

oscillation experiments.  Studies in the past have kept this dipole form factor included in their 

analysis.  Isolating nucleon-level effects before considering nuclear modeling is critical for 

obtaining a consistent value of mA.  We have shown the effects of hydrogen free proton 

scattering in the extraction of mA in the mineral oil data.  Figure 6 makes a comparison between 

values of mA as extracted by z expansion. 

 

 

Figure 6: Extracted values of mA versus Q2
max using z expansion with |𝐚𝐤| ≤ 5.  Carbon data results for mA

 are shown by red 
circles; mineral oil results without the inclusion of free protons are shown by blue squares, and mineral oil results with the 
inclusion of free protons are shown by green triangles. 

Overall, the results of this paper further indicate that the dipole ansatz is overly constrained 

producing unreliable values for mA.  Furthermore, we see very good agreement between this 

anti-neutrino analysis and the neutrino analysis in [8].  The continuation of model independent 

analysis is necessary for insight into the nature of CCQE interaction.  For future work, a similar 

study can be made on different data sets with a variety of nuclear targets. 
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