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Abstract 

 

 

When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) 

neutrino-nucleon scattering is imperative. This interaction depends on a nuclear model as well as 

knowledge of form factors. We started by familiarizing ourselves with the Relativistic Fermi Gas 

(RFG) nuclear model which is the standard for analyzing CCQE scattering. We then verified 

calculations concerning the scattering cross section from the RFG nuclear model. An alternative 

to this is the Correlated Fermi Gas (CFG) nuclear model. Our analysis using this new model 

yielded additional functions as the result of four possible transitions between the momenta of the 

initial and final nucleons, as opposed to the single transition from the RFG model. These new 

functions are given as integrals. We were able to present analytical solutions to these integrals 

which will simplify their implementation in a computer code. In the future we hope to use these 

functions to model the CCQE cross section using the CFG model. 
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1 Introduction 
 

Experiments of the past few decades have shown evidence of a quantum mechanical 

phenomenon known as neutrino oscillations. In this process, a neutrino with specific flavor 

(electron, muon, or tau) can later be measured to have a different flavor. The observation of 

neutrino oscillations implies that neutrinos have non-zero mass contrary to the Standard Model 

of particle physics. The 2015 Nobel Prize in physics was awarded to Takaaki Kajita and Arthur 

B. McDonald for their discovery of neutrino oscillations. Understanding more about neutrino 

oscillations could provide insight into physics beyond the Standard Model. 

 

When analyzing scattering CCQE cross sections form factors and a nuclear model are both 

necessary. One must sufficiently describe both the nuclear-level interaction and the nucleon-level 

interaction in order to generate a consistent result. While the effects of modifying the nuclear 

level analysis to include z expansion have been done previously ([1] and [2]), we focus on the 

implications of modifying the nuclear model. 

 

This paper is structured as follows. Section 2 will discuss CCQE scattering. Section 3 will 

discuss nuclear models which can be used to analyze neutrino scattering, in particular how the 

Correlated Fermi Gas Model can be used. Section 4 will discuss the results of using the CFG 

model to analyze the scattering cross section, and the further directions of the project. 

 

 

2 Neutrino Oscillations 
 

2.1 Charged Current Quasielastic Scattering 
 

Charged current quasielastic scattering (CCQE) is defined as the scattering of a(n) (anti) neutrino 

off a nucleon such that a nucleon and a charged lepton of the same flavor as the neutrino are 

produced. 

νµ + n → µ
-
 + p                                                            (1) 

νµ
-
 + p → µ

+
 + n                                                           (2) 

 

The (anti) neutrino-nucleus scattering has two levels: the interaction of the (anti) neutrino and the 

nucleus, and the (anti) neutrino and a nucleon. Both of these interactions must be understood in 

order to produce consistent results. While working with CCQE interactions one must take into 

account the nuclear level interactions. In order to achieve this many experiments employ the 

Relativistic Fermi Gas model (RFG) (discussed in section 3, and even more in depth in [3]). 

 

In order to understand the CCQE interaction at a nucleon level, four form factors are used, which 

can be obtained from the nucleon matrix element of the Standard Model weak charged current 

[3]. The first two are the vector form factors F1 (q
2
) and F2 (q

2
) which are related via isospin 

symmetry to the electromagnetic form factors that are measured in electron-proton scattering. 

The next from factor contribution is FP (q
2
) which is suppressed by powers of the small lepton-

nucleon mass ratio. This leaves only FA(q
2
) unconstrained, but one can use z expansion to the 

axial-vector form factor to represent it as a Taylor series in z. The use of z expansion introduces 
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more parameters in the axial-vector form factor allowing more freedom in fits. Further details of 

this method can be found in [1] and [2].  

 

3 Nuclear Models 
 

3.1 Relativistic Fermi Gas Model 

 
The Relativistic Fermi Gas model (RFG) discussed in [3] has been widely used to model 

scattering experiments. Here we view the nucleus cross section as a statistical average of the free 

nucleon cross section. The incoming (anti) neutrino interacts with a nucleon determined by some 

momentum distribution ni(p), and the final state nucleon phase space is limited by a factor of 

[1−nf (p′)] enforcing Fermi statistics. In this case p′ = p + q where q is the momentum transfer. 

The formula for this cross section as given in [1] is, 

 

   qpp  ffreeibound nn                                                 (3) 

 

In the RFG model we assume the maximum allowed momentum of the initial nucleon is pF and 

the minimum allowed momentum of the final nucleon is also pF. As given in [3] the initial and 

final state distributions for the RFG model are, 
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A plot of the initial state distribution is below in Figure 1. In which the Fermi momentum is the 

cutoff point signaling the transition of momentum between nucleons. 
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Figure 1: Plot of the initial state distribution for CCQE scattering from the RFG model in [3] 

using pF = 220 MeV/c [5]. The first region corresponds to the momentum of the initial nucleon, 

while the latter region relates to the final state momentum. 

 

The cross section in (3) is multi layered, and can be further expressed in terms of a hadronic 

tensor and leptonic tensor. Of which the hadronic tensor can be further broken down in terms of 

Wi functions, which are in turn products of ai functions and H functions [3].  
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The momentum k is the momentum of the neutrino and is related to the momentum transfer q by 

the formula k′ = k - q from [1]. 

 

These H functions are related to form factors, while the ai functions are related to the nuclear 

model as in [3] and can be calculated from the momentum distributions in (4) and (5). 

 

We can proceed to perform these calculations relating to the scattering cross section in terms of 

a1, a2, a3, …, a7 as in [1] and [3]. An example calculation for the a1 function is provided below. 

 

                                

  qpp ,3

1 fda
 

 

  
 

qpp

qpp
qppqp



 


'

'
1)(

4
),(

0

2 





q
nn

Vm
f fi

T

 

(9) 

I II 

(8) 



5 
 

Here an arbitrary volume V was chosen such that the final state nucleon momentum distribution 

can be effectively limited by the aforementioned factor of nf(p′). 
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In this case the normalization V is fixed by requiring A/2 neutrons below the Fermi surface, such 

that 
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It should be noted that there is only a single possible non-zero combination of the momentum 

distributions (4) and (5) in the case of the RFG model. This combination is the result of a 

momentum transfer between the initial and final state nucleons where the initial nucleon has 

momentum less than the Fermi momentum, and the final nucleon’s momentum is greater than 

the Fermi momentum.  Additionally upon calculating each ai function it is possible to express the 

results in terms of three bi functions and various constants shown in the appendix of [1].  

 

3.2  Correlated Fermi Gas Model 

 
When working with CCQE interactions the Relativistic Fermi Gas model (RFG) is commonly 

used to account for the nucleon level interactions. Yet experiments show that tensor force 

induced short-range correlations (SRC) between proton-neutron pairs shift nucleons to high-

momentum in symmetric nuclear matter (SNM) [4]. In order to account for this momentum shift 

we use the Correlated Fermi Gas model (CFG) when analyzing CCQE cross sections from 

neutrino nucleon scattering. 

 

As given by [4], the initial state distribution from the CFG model is, 
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Where pF
0
 = pF = 220 MeV/c [5] and λ = 2.75 ± 0.25 [4]. C∞ is the phenomenological height 

factor as given in [4], and A0 is a constant from the normalization. 

While an initial state momentum distribution is given in [4] we had to rework the distribution to 

keep our results consistent. We had to undo the normalization done in [4] because the authors 

normalized the momentum distribution to the number of nucleons as shown below in (13). 
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In order to represent this difference we in distributions we labeled the momentum distribution 

from [4] with  ̃     as shown in (12). This distribution differs from our initial momentum 

distribution due to a difference in normalizations because we normalized to A/2 as in [1], while 

[4] normalized to 1. This difference corresponds to the product of an arbitrary volume like that in 

(11) from the RFG model and our normalized momentum distribution given by Vni(p). This 

gives us the relation   )(~ pp iVnn  , where once again our normalized momentum is rescaled 

such that 0 ≤ ni(p) ≤ 1. 

 

For the cases when λ≠1, which are the cases that result in the tail region we are interested in, we 

must divide each term in (12) by a factor of A0 from [4]. The resulting renormalized initial and 

final state distributions can be calculated. After a change of variables (C∞ = C0*pF) and the 

renormalization from A0 the resulting distribution(s) can be of the same form as those in [1] and 

[3]. They are included below accompanied by a plot of the initial state distributions in Figure 2. 
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Figure 2: Plot of the initial state distribution for CCQE scattering using average values for C0 and 

λ as given by [4], and pF value given by [5]. The first two regions correspond to the momentum 

of the initial nucleon, while the latter two regions relate to the final state momentum. 

 

Now notice what happens in the case where λ=1. When this is true the arbitrary volume V from 

the RFG model is equivalent to the A0 in (12) [4]. In fact, in the limit λ=1 the tail-region of the 

momentum distribution disappears altogether, generating a distribution like that of the RFG 

model. For this case the constant V can be calculated in the limit that λ=1. 
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During scattering experiments momentum is transferred, and there are multiple transitions that 

can result. Of the nine possible combinations of the values for the initial state and final state 

distributions from (14) and (15), only four are non-zero, which correspond to the four transitions 

previously mentioned. Depending on the momentum transfer as well as the momentum of the 

initial nucleon, transitions can occur from region I to regions III and IV, and from region II to 

regions III and IV.  

 

Using equations (14) and (15) and substituting them into, 

I 

II 
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from [1], we can once again proceed to perform the necessary calculations relating to the 

scattering cross section in terms of a1, a2, a3, …, a7 as in [1] and [3]. However because of the 

introduction of the CFG model, there are now four different functions f(p,q) (one for each of the 

now possible transitions) that will each yield a different ai function.  

 

3.2.1  CFG Transition I → IV 
 

Of the four f(p,q) functions, one of them is identical to the function given in [1] and [3] for the 

RFG model that is used to solve for the ai functions. This case pertains to the momentum 

transition from region I to region IV where both corresponding values from equations (14) and 

(15) above are 1. Because this is equivalent to the results from using the RFG model to analyze 

the interaction the resulting ai for this particular f(p,q) is the same as shown in [1] and [3] and as 

shown above. 
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In these cases where ni(p) = 1 and (1 – nf(p+q)) = 1, the resulting ai integrals will all be 

equivalent to their RFG counterparts. Put simply, the transition from region I to region IV is 

equivalent to the transition modeled with the RFG model in that they both generate the same ai 

functions, however the limits of integration for these CFG integrals have yet to be confirmed. 

 

 

3.2.1  CFG Transition II → IV 
 

By substituting the corresponding values from equations (14) and (15) into equation (18) The 

three other transitions (I to III, II to III, and II to IV) each result in a different function f(p,q). 

The ai integrals relating to each of these transitions can be calculated, but as shown below 

become increasingly more tedious. The method used to solve for the a1 integrals related to these 

three transitions is provided below, and could be used to calculate the other ai functions in the 

future. 
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First start with an ai function as seen in [1] and [3], here we start with a1 as in equation (19): 
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Next pull out constants from the integrand and notice that the integral has no dependence on phi, 

so a factor of 2π can also be pulled out. 
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The next step is to modify the delta function so that it is a function of cos(θ), which can be done 

given (25), (26), and (27) below from the appendix of [1]. 
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Plugging this back into (24) yields 
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In combination with      
    

 , this integral can now finally be expressed in terms of an 

integration over the energy of the initial nucleon. It should also be noted at this point that when 

dealing with transitions to region III there will be a factor of (p+q)
4
 in the denominator of the 

integrand. These terms can also be simplified using the equation from energy momentum 

relations as well as the delta function found in (27). The process used to perform this 

simplification is included below. 
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From here we can see that this gives us our equation from our delta function which allows us to 
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In order to evaluate this integral the method of partial fractions can now be used to expand the 
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Upon integrating each of these terms individually the final equation for the a1 transition between 

regions II and IV is: 
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As we calculated the remaining integrals for the a1 functions their respective partial fraction 

integrands became less and less trivial and involved more and more terms. However the method 

shown above was used to solve for each of these a1 functions, and could be used to solve the 

remaining ai functions from [1] and [3], for the CFG model. 
 

 

4 Summary 

After looking at the RFG nuclear model, we conducted an analysis using the CFG nuclear model 

for CCQE scattering. The four possible transitions from the CFG model each have unique 

functions, ai, used to represent them similar to the RFG model. The equations relating to a1 were 

calculated, and the method used to perform these calculations was shown. The future steps for 

this project are to determine the expressions for the remaining integrals for each ai function, as 

well as confirm the limits of integration for said integrals. Furthermore it has not yet been 

determined if these expressions can be simplified for easier implementation (such as the bi 

equations from [1] and [3]). Finally an analysis involving the use of the CFG model and z 

expansion could be performed to determine a value of the axial radius. 
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