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Abstract
The Belle II detector will become operational in 2018, but using Monte Carlo data, analyses

can begin work before then. This analysis aims to create a method that can remove background
from B0 → K+ π− π0 signal events through the use of TMVA, and the quality of the method is
preliminarily evaluated with Laura++ software. With more development, this method will be used
in CP analyses for the B0 → K+ π− π0 decay mode.
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1. INTRODUCTION

Through the use of Monte Carlo simulation data, analyses can be started before the Belle
II detector begins taking data, which will expedite many projects. This analysis will study
the prospects for data selection in the mode B0 → K+ π− π0 with the first ab−1 of data
from Belle II. The scope of this project is to create a method that eliminates background
for the B0 → K+ π− π0 decay mode while maintaining enough signal events to analyze the
data and search for evidence of CP violation. Although a full CP analysis is the long-term
goal of studying this mode, such an analysis was beyond the scope of this project.

A Dalitz plot is a method for visualizing and studying three body decays. In a three
body decay, there can be short-lived intermediate particles, called resonances, such as in the
case of B0 → K+ π− π0 where there can be an intermediate K∗ or ρ. For example, B0 →
K∗+ π−, and K∗+ → K+ π0. These resonances will show up in the Dalitz plots as bands in
the plot corresponding to the mass of the resonance. Figure 1 demonstrates this with each
resonance band having its own color.

0π-π
2m

0 5 10 15 20 25

0 π
+

K2
m

0

5

10

15

20

25
-ρ
(1450)-ρ

+K*(892)
0K*(892)

Non-resonant
(1430)0K*
(1430)2K*

 (Toy MC with no interference)0π-π+ K→Example Dalitz plot for B

FIG. 1: A plot showing different resonance bands in multple colors made from simulated data.
This is not reflective of actual data, which would not have colors to differentiate the resonances.

Charge-Parity (CP) violation is the property of particles to have different behavior be-
tween a particle and its anti-particle. There are three main types of CP violation: direct
CPV, CPV in mixing, and CPV in interference. Study of this mode will focus on direct
CP violation, which is the difference in the probability of certain decay modes of a particle
and its anti-particle; for example, a particular kaon decay mode might happen slightly more
often than the decay “anti-mode.” It is possible to not have any CP violation in the inclusive
decay mode but to the have it in one or more resonant modes.

By studying B0 → K+ π− π0 via a Dalitz plot method, it will be possible to search for
direct CP violation in not just the three body decay, but also the intermediate resonant
modes.

3



1.1. Purpose and Goals

This project aims to provide a preliminary method of data selection which is efficient at
keeping signal and significantly reduces background events. Other previous analyses of K
ππ decay modes, in which all three particles are charged, have observed several thousand
events after cuts. The decay mode of this analysis has a neutral pion, which makes accurate
reconstruction more difficult to achieve. Nonetheless, this project aims to have roughly one
to two thousand signal events after data selection processes. However, since there are always
inadequately reconstructed signal events and a chance that the copious background can
mimic signal properties, there will inevitably be signal events that are lost and background
events that are not. Therefore, maximizing the background rejection and signal efficiency is
the primary measure of success for this aspect of the analysis. An example of a background
rejection vs. signal efficiency plot is shown in figure 2.
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FIG. 2: An example ROC curve for the BDT MVA method (discussed in more detail in 2 2.4 2.4.1).

1.2. Simulated Data

MC8 is the eighth set of Monte Carlo simulated data that Belle II has produced for use in
analysis. For this analysis, MC8 campaign data samples were used. The signal sample was,
of course, for B0 → K+ π− π0, and the background samples used were from uu, mixed, and
charged blocks. uu sample was chosen as a representative for the continuum background
data, but other continuum samples should be tested. Summarized from the MC8 Phase III
table on DESY’s Confluence, table I shows the sample type, number of events per 1 ab−1

of data, and the location of a few datasets on KEKCC [1].

1.3. Tools

To develop the analysis for this project and evaluate it, two tools were used significantly:
Laura++ [3] for fitting and fit analysis, and TMVA [4] for creating multivariate analyses
(MVA) and picking the best-performing MVA. In addition to these, basf2 [5] and the Belle
II grid were heavily used for reconstruction of MC8 data samples.
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TABLE I: A table which provides some basic information from the MC8 generic samples page.
*Signal sample information is from the signal samples page [2]. It is not proportional to 1 ab−1 of
data and it is not included in the total.

Sample type Number of events ×106 LPN
uu 1605 prod00000966/s00/e0000/4S/r00000/uubar
mixed 534.6 prod00000962/s00/e0000/4S/r00000/mixed
charged 565.4 prod00000964/s00/e0000/4S/r00000/charged
dd 401 prod00000968/s00/e0000/4S/r00000/ddbar
ss 383 prod00000970/s00/e0000/4S/r00000/ssbar
cc 1329 prod00000972/s00/e0000/4S/r00000/ccbar
total 4818

signal* 2.0 prod00001967/s00/e0000/4S/r00000/1110022000/sub00

1.4. A Note on Further Work

This project was a ten-week summer program; as such, many aspects of a full analysis were
missed. Several tasks should be done or improved to make this analysis more robust which
there was not enough time to do initially. A basic yet important part of an analysis such
as this would be to separate the decay into B0 and B0. This is essential for examining the
CP violation of this mode, which would also require looking at B meson vertex information.
This will be pursued in the future. Another possible addition to this analysis would be to
test more multivariate analysis techniques. Additionally, as stated in section 1 1.2, testing
more background samples, especially from the continuum, would improve the quality of this
analysis. An error analysis has not been looked at either; the only errors which have been
examined are those returned from Laura++ fitting. Of the full MC8 signal data sample,
74.37% of events had only one candidate, exemplified in figure 3, so best candidate selection
was not studied in detail during this project, and events with more than one candidate were
picked pseudo-randomly from the possibilities. Finally, variables such as ∆E and MBC were
included in the multivariate analysis since this was an optimal way to optimize the signal
to background ratio on a short timescale. With more time to improve the selection, these
variables would be considered separately to allow for study of, for example, background
sidebands.

2. EVENT SELECTION

To winnow down the data, there is a set of multiple steps to figure out the best cuts to
make. First, there was an initial processing of MC8 data samples which also performed a
reconstruction of the data. The reconstruction took all theK, π, and π0 candidates and made
all possible combinations; ultimately, it would return the combinations which pass initial
loose selection cuts. After that, basic cuts were applied to the data in order to see how they
would affect the data and number of events still viable (see 2 2.1). Following the basic cuts,
continuum suppression variables were brought in to eliminate the continuum background
more effectively (discussed in 2 2.2). In the last step of this project, a multivariate analysis
(MVA) was used to more efficiently keep the signal while getting rid of the continuum
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background (described in 2 2.4).

2.1. Initial Cuts

The first step of data selection was to make general cuts to the events. This reduction of
events used many individual variables on which to place limits. The variables used and the
limits set on them are listed below, and the effects of these cuts are shown in tables II and
III and are discussed in section 2 2.1 2.1.1.

• 0, No cuts: the total number of events that would be started with.

• 1, Initial processing with a reconstruction steering file: Cuts applied here:
massVertexRave at a value of 0.15 (15% confidence rate), 5.24 < MBC < 5.29, and
|∆E| < 1.0.

ROE masks: nCDCHits > 0, useCMSFrame(p) <= 3.2, p >= 0.05

• 2, MBC : 5.27 < MBC < 5.29

• 3, ∆E: |∆E| < 0.02

• 4, mass of the π0: 0.120 < mπ0 < 0.148

• 5, error of mass for π0: Err(mπ0) < 0.01

• 6, number of candidates per event: nCands < 100

These cuts were chosen because of their ability to distinguish background and low-quality
signal events from higher-quality signal events. For example, background data will have a
higher error on the mass of the π0 than good signal data. The variable nCands tells how
many reconstructed candidates a particular event has, so the fewer the possible candidates,
the more likely that the selected reconstruction is correct, thus there is a very loose limit on
the variable nCands. MBC is the beam energy constrained mass, and ∆E is the difference
between the energy of the reconstructed B meson and the energy of the beam [6]. Placing
constraints on these two variables is an established practice for differentiating signal and
background events.

2.1.1. Cut Flow Tables I

Tables II and III are cut flow tables used to help determine the effectiveness of some basic
cuts to the data, listed above. In the cut flow tables of this note, the column “Bkg Evts”
is the sum of the events from background samples uu, charged, and mixed. Table II shows
the effects of cuts to the unscaled number of events; the numbers shown come directly from
processing the data files of MC8, which means that the proportion of signal to background
events is not what would be expected from real data. During collisions, the ratio of B0 →
K+π−π0 signal to background events would be significantly smaller. Table III presents the
number of events scaled to roughly how may events would be in 1 ab−1 of data.

To calculate the scaling factors for the signal, the following values are needed: the number
of B0 events in a collision (taken to be roughly 534.6 million from the mixed background
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FIG. 3: A histogram showing the variable nCands for one signal file after initial processing and
reconstruction. For ability to see bins with few events, the y-axis is on a log scale.

sample) and the branching fraction of the B0 → K+ π− π0 mode, which is 3.78 × 10−5 [7].
Equation 1 presents this calculation.

scalesignal = (number of B0 events)× (branching fraction)/(number of events in dataset)

= (5.346× 108) × (3.78× 10−5) / (2× 106) = 0.010104
(1)

It should be noted that this analysis did not use the full background datasets due to
processing time and time to download the processed files from the grid; instead, a par-
tial sub-block of the three data samples (uu, mixed, and charged) were used in the data
processing. Thus, scaling up the number of events was necessary. To calculate the scaled
number of background events, the number of background events in 1 ab−1 and the number
of events used in the analysis are needed. This calculation is shown in equation 2. For each
background sample, the numbers are different, so the calculation is only general.

scalebackground = (number of events in full dataset)/(number of events used in analysis) (2)

As can be seen in table III in particular, the separate cuts on variables for MBC and
∆E do not change much with respect to the number of events because the figure of merit
(FoM) does not change significantly between the cuts. Even though the variables’ effects on
the data are similar, they are both kept in the analysis for their physical significance, such
as for defining signal regions and side bands.

The figure of merit is calculated as described in equation 3:

FoM = (number of signal events)/
√

(number of signal events) + (number of background events)

=
S√
S +B

(3)
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TABLE II: A table showing the effects of basic cuts on the raw, unscaled number of events.

Cut Signal Evts Signal Eff Bkg Evts Bkg Eff uu Evts Charged Evts Mixed Evts
none 2× 106 100 1.155× 108 100 3.15× 107 5.25× 107 3.15× 107

init 98139 4.90695 54509 0.0471939 52274 1344 891
MBC 88088 4.4044 15954 0.013813 15181 321 452
∆E 88052 4.4026 15755 0.0136407 15005 307 443
mπ0 75131 3.75655 8533 0.00738788 8109 175 249
Err(mπ0) 71150 3.5575 6275 0.0054329 5948 136 191
nCands 71106 3.5553 6230 0.00539394 5903 136 191

TABLE III: A table showing the effects of basic cuts on number of events scaled to 1 ab−1 of data.

Cut
Signal
Evts

Signal
Eff

Bkg Evts Bkg Eff uu Evts
Charged
Evts

Mixed
Evts

FoM

none 20207.9 100 2.705×109 100 1.605×109 5.654×108 5.346×108 0.38854
init 991.591 4.90695 2.6931×106 0.0995594 2.663×106 14474.2 15121.5 0.604126
MBC 890.036 4.4044 784636 0.0290069 773508 3457.02 7671.09 1.00422
∆E 889.672 4.4026 775365 0.0286641 764540 3306.24 7518.34 1.00978
mπ0 759.119 3.75655 419283 0.0155003 413173 1884.67 4225.89 1.17129
Err(mπ0) 718.895 3.5575 307771 0.0113779 303065 1464.66 3241.54 1.29433
nCands 718.451 3.5553 305478 0.0112931 300772 1464.66 3241.54 1.29837

2.2. Continuum Suppression

The continuum (e+e− → qq; q is u, d, s, or c) is a type of event distinct from BB
decay events. BB decays have spherical shapes due to the low velocity of the mesons in the
center of mass frame, whereas continuum events have event shapes that are jet-like because
they are not at rest on the center of mass frame; daughters are boosted in a particular
direction [6]. Since continuum events are produced three times more than those from BB
[8], it is imperative to get rid of as many continuum events as possible while maintaining
signal efficiency. There exist many variables to separate BB events from the continuum;
event shape elements and thrust quantities were found to be most useful in this part of the
analysis.

2.2.1. Cut Flow Tables II

For the continuum, the variables which were included for cuts were:

• 1, ThrustB: ThrustB < 0.95

• 2, hso(0, 4): hso04 < 0.4

• 3, hso(1, 2): hso12 < 0.4
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The effects of these cuts are shown in tables IV and V.
Figures 4, 5, and 6 show the distributions of these variables for signal and background;

the left image of each shows the signal and background curves scaled to have the same
area, and the right image shows the curves unscaled. The scaled images are to compare the
relative shapes of the distributions, and the unscaled images are to show the proportions of
the data.

TABLE IV: A table showing the effects of continuum suppression cuts on the raw, unscaled number
of events.

Cut Signal Evts Signal Eff Bkg Evts Bkg Eff uu Evts Charged Evts Mixed Evts
prev 71106 3.5553 6230 0.00539394 5903 136 191
ThrustB 50422 2.5211 1116 0.000966234 962 68 86
hso(0, 4) 50150 2.5075 1049 0.000908225 901 66 82
hso(1, 2) 50104 2.5052 1007 0.000871861 859 66 82

TABLE V: A table showing the effects of continuum suppression cuts on number of events scaled
to 1 ab−1 of data.

Cut
Signal
Evts

Signal
Eff

Bkg Evts Bkg Eff uu Evts
Charged
Evts

Mixed
Evts

FoM

prev 718.451 3.5553 305478 0.0112931 300772 1464.66 3241.54 1.29837
ThrustB 509.461 2.5211 51208.1 0.00189309 49016.2 732.328 1459.54 2.24023
hso(0, 4) 506.713 2.5075 48010.5 0.00177488 45908.1 710.789 1391.66 2.30045
hso(1, 2) 506.248 2.5052 45870.5 0.00169577 43768.1 710.789 1391.66 2.35078

0 0.2 0.4 0.6 0.8 1 1.2

E
nt

rie
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

ThrustB for signal and background

Legend
Signal
Background

ThrustB for signal and background

0 0.2 0.4 0.6 0.8 1 1.2

E
nt

rie
s

0

20

40

60

80

100

120

140

310×
ThrustB for signal and background

Legend
Signal
Background

ThrustB for signal and background

FIG. 4: ThrustB distribution for signal and background; scaled left, unscaled right.

2.3. Dalitz Plots

Another aspect of an analysis like this is the efficiency of the cuts being consistent over
a Dalitz plot. A Dalitz plot is used to show the kinematics of a three-body decay using the
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FIG. 5: hso(0, 4) distribution for signal and background; scaled left, unscaled right.
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FIG. 6: hso(1, 2) distribution for signal and background; scaled left, unscaled right.

squared mass of two combinations of the three daughters. If there are any resonances in the
decay, they will show up as lines on the plot, and their positions (vertical, horizontal, or
diagonal) indicate which two particles came from the resonant particle.

In addition to seeing signatures of resonances, Dalitz plots are useful for seeing how
data is affected during the analysis and event selection processes. Shown in figure 7 are
Dalitz plots which display the efficiency of the basic cuts on the signal (left) and on the
self crossfeed (right) events over the plot. This is done by dividing the Dalitz plot after
cuts by one that has the truth data, the latter being created by a module (created by Dr.
Matthew Barrett) with basf2. As is expected, the efficiency of the cuts is significantly lower
around the kinematic boundaries where there are very low-momentum particles that are
easily misreconstructed. The particles most likely to be misreconstructed are π0 mesons.
This is because π0 decays into two photons; during reconstruction of the event, there can be
many photon candidates from other particles or calorimeter noise, which can produce many
fake π0. As such, the self crossfeed plot has a higher efficiency in the corner representing
the low momentum π0.

Also provided in figure 8 are the Dalitz plots for the two kinds of background used in
this project: uu (left) and BB (right). These are unscaled plots (not proportional to 1 ab−1
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FIG. 7: Efficiency Dalitz plot using the Dalitz Truth module output with simple cuts on the signal
events (left) and self crossfeed events (right). Note that the color scales are not the same for both
plots.

of data) without any cuts made aside from those applied during the initial processing and
reconstruction.
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FIG. 8: Dalitz plots for the background samples uu (left) and mixed + charged (right). Plots are
for unscaled number of events without any cuts aside from initial processing.

2.4. Multivariate Analysis (MVA)

Multivariate analyses (MVA) are methods of data selection which take multiple variables
into account simultaneously. This method differs from a series of cuts because each cut only
considers one variable at a time when determining whether to keep events or not. Often-
times multivariate analyses mimic human selection processes and are much more efficient at
keeping signal events and rejecting background. There are many different statistical models
to choose from when doing an MVA.

ROOT [9] has a built-in MVA program called TMVA that uses training and testing data
to come up with methods of data selection. This program was used to test several MVA
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methods on the data and judge which method would best suit this analysis. Only the method
which proved best to this project is discussed (section 2 2.4 2.4.1). Additionally, figure 9 is
a background rejection vs. signal efficiency plot of the multiple MVA models which TMVA
applied to the data. The best MVA method is the one for which the background rejection
and signal efficiency are maximized.

2.4.1. Decision Trees (BDT)

A decision tree (DT) is a method of multivariate analysis that poses a set of questions,
each of which only has two possible answers, dependent on the answers to the previous
questions in order to determine if an event is signal or background [10]. Most often, several
DTs are used in a single examination of the dataset in order to get the best result. For this
analysis, the BDT method performed best on the data throughout the multiple iterations
of improving the MVA. Figure 9 shows in a cyan line that the BDT method was closest to
100% background rejection and 100% signal efficiency.

When the analysis is created for the BDT method, a BDT variable is created, and cuts
can be made to the data on this variable. The histograms in figure 10 show the distribution
of the BDT variable for the signal and uu samples. On the histogram, there is a green
vertical line at 0.3; the cut on BDT to this data was BDT > 0.3. Figure 11 shows the
efficiencies of 1000 signal (blue) events and 1000 background (red) events depending on the
cut made on BDT variable. In green is a curve representing the figure of merit (as described
in 3). The peak of the figure of merit curve changes value depending on the number of
background and signal events.

Only 4.1% of the signal events remain from the unprocessed dataset after the BDT cut;
however, of the signal events remaining from the initial processing and reconstruction and
a cut on nCands, 85% was retained after the cut to the BDT variable. This is shown in the
“Signal Evts” column of tables VI and VII. In the “Bkg Evts” column of table VII (data
scaled to 1 ab−1), only 5.8×10−4 % of the events remain after the cut on BDT. This amounts
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to a roughly 1:2 ratio of signal to background (scaled event numbers) after processing, and
thus this would be what to expect using an analysis like this on 1 ab−1 of data.

Figure 12 shows the efficiency Dalitz plot using the BDT cut instead of the basic cuts.
As compared to the signal efficiency plot in figure 7 (left), figure 12 has overall better
efficiency. Also, it can be noted that the background Dalitz plots after the BDT cut (figure
13) are significantly more empty than in 8. Both are unscaled, so in 1 ab−1 of data, there
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would be more entries in more bins.
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FIG. 12: Efficiency Dalitz plot for signal events using the BDT cut and the Dalitz Truth module
output.
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FIG. 13: Dalitz plots for the background samples uu (left) and mixed + charged (right). Plots are
for unscaled number of events after BDT cut.

The variables included in this MVA are the following:

• ThrustB, the magnitude of B thrust axis [11]

• ThrustO, the magnitude of the ROE thrust axis

• CosTBTO, the cosine of the angle between the thrust axes of the B and the ROE

• CosTBz, the cosine of the angle between the B thrust axis and the z-axis

• R2, the reduced Fox-Wolfram moment R2

• mm2, the square of the missing mass
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• et, transverse energy

• hso and hoo variables, the normalized Fox-Wolfram moments

• MBC

• ∆E

• mπ0

• Err(mπ0)

In a longer analysis, ∆E and MBC would have been left out of the MVA in order to
examine them in other contexts, such as background sidebands, as mentioned in 1 1.4.
However, the short timespan did not allow for such analyses and including ∆E and MBC

proved effective in the MVA.

TABLE VI: Using the previous cuts in the MVA instead of before the MVA. Unscaled data.

Cut Signal Evts Signal Eff Bkg Evts Bkg Eff uu Evts Charged Evts Mixed Evts
none 2×106 100 1.155×108 100 3.15×107 5.25×107 3.15×107

init 98139 4.90695 59551 0.0515593 57316 1344 891
nCands 97955 4.89775 59154 0.0512156 56935 1335 884
BDT 83735 4.18675 40 3.4632×10−5 31 2 7

TABLE VII: Using the previous cuts in the MVA instead of before the MVA. Scaled to 1 ab−1.

Cut
Signal
Evts

Signal
Eff

Bkg Evts Bkg Eff uu Evts
Charged
Evts

Mixed
Evts

FoM

none 20207.9 100 2.705×109 100 1.605×109 5.654×108 5.346×108 0.38854
init 991.591 4.90695 2.9499×106 0.109057 2.920×106 14474.2 15121.5 0.57723
nCands 989.731 4.89775 2.9303×106 0.108331 2.901×106 14377.3 15002.7 0.57807
BDT 846.053 4.18675 1719.86 6.3581×10−5 1579.52 21.539 118.8 16.7023

3. LAURA++

Laura++ [3] is a tool used for simulated (MC) data generation and fitting of the data,
MC or experimental. The program uses a maximum likelihood fit to a multidimensional
function which includes functions to describe lineshapes of different resonance components.
It was used near the beginning of this project for generation of Toy Monte Carlo data and
initial fitting of raw data, and again at the end it was used for fitting data to which the
MVA cut was applied.

Included in the final fits were three resonances, a signal efficiency Dalitz plot, and a Dalitz
plot for each the uu and the BB (mixed + charged) background samples. Providing these
files to Laura++ allows the program to better fit the data since it has more information.
However, since the cut on the BDT variable left so little background in the unscaled data
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FIG. 14: A Dalitz plot of the data generated by Laura++. The background included in this in the
input options in unscaled after reduction from the cut of BDT.

(see figure 13), each bin with data made a stark contrast against an empty bin, making the
background Dalitz plots very difficult to fit. As such, Laura++ did not always successfully
complete the fits to the data. However, with only nine BB events and thirty-one uu events
provided for fitting, the amplitudes of the resonances were determined reasonably well.

4. CONCLUSIONS

Ultimately, for this project, a significant measure of success is the pull plot created by
the Laura++ fitting. A pull plot should have a mean of zero and a width of one, and it
tells how closely the fit matches the actual data. When generating data in Laura++, the
program will create many sets of data from the same input parameters, called experiments,
the number of which can be adjusted. When fitting, it is best to fit the same experiment
many times due to multiple solutions from secondary minima. Typically, pull plots from
Laura++ are made from many fits, on the order of hundreds, of a hundred experiments.
However, fitting the data is a time-consuming process, so it was not practical to do this in
the time of this project. The pull plot in figure 15 is therefore sparsely populated with the
successful fits of the fifty attempted.

This project as gone through the entire chain of steps that an analysis should, though
each step has the possibility to be improved. Many of these improvements and the further
work is discussed in section 1 1.4.

5. PREVIOUS ANALYSIS

In 2014, there was a Belle note describing an uncompleted Belle analysis of the B0 → K+

π− π0 mode using Dalitz plots [8]. This project referenced that note, as this is somewhat of
a continuation of the note. The analysis of this paper differs in its scope and goals due to
amount of time availabel to this project. However, a future goal of this analysis is to finish
the work started in the aforementioned note.
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FIG. 15: A pull plot of the fit for the second resonance included in the data generation.
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