Multiplicity-Momentum Correlations in
Relativistic Nuclear Collisions

Nolan Luppino
August 20, 2017

1 Intro

Over this past summer I have been working with Sean Gavin and George
Moschelli on how correlations of momentum and multiplicity could indicate
signs of partial thermalization of the matter produced in relativistic nuclear
collisions. At the relativistic Heavy Ion Collider (RHIC) and Large Hardron
Collider (LHC) large nuclei collide at relativistic speeds to produce a decon-
fined quark-gluon medium that might be quark-gluon plasma. Hydrodynamic
models have been successful at describing the dynamics of the evolution of the
medium, but these models assume local thermal equilibrium. Small systems like
proton-proton and proton-nucleus show signs of hydrodynamic like evolution in
high multiplicity events, but were not expected to reach thermal equilibrium. It
is likely that collision events of any kind never fully equilibrate. Therefore, it is
important to find an independent indicator of the level of equilibration. In this
paper we discuss how multiplicity-momentum correlations could signal partial
thermalization. We analyze UrQMD simulated events of Au-Au collisions at a
center of mass energy 200GeV per nucleon.

2 Multiplicity-Momentum Correlations

The UA1 experiment shown in figure 1 indicates that there is a positive cor-
relation between average transverse momentum per particle (p;) and charged
multiplicity N in proton-proton collisions [1]. Here the transverse momentum
per particle is (p;) = (O p:,)/(N) where > p;, = P is the total transverse
momentum of an event, and ( ... ) represents an average over events.



0.60 —r—TT

i R [T
L m Jet .
- o No-Jet A
055 (— —1
0.50 |— -
< 0.45 B
= 2
& J
I“‘.: -
[-9
S -
0.40 —
0.35 |— -
- 4
g Lomas s sed sxaplepieloes
0 20 40 60 80 100

Figure 1: UA1 experimental data of average transverse momentum as a function
of multiplicity [1]. top lines represent events with jets and bottom lines are
events without jets. Points represent actual experiment data and solid lines are
PYTHIA calculations.

As figure 1 illustrates, (p;) indicates a positive correlation with multiplicity
when there are no jets present and a negative correlation when there are jets
in an event. From the data one could also argue that the introduction of jets
makes no correlation between p; and N, but PYTHIA calculations show defini-
tive negative correlations with jets. This is interesting because just by adding
particles to the system it increases the average momentum of each particle in
the no-jet case. It would be more intuitive if just P; goes up with N since P;
is the total transverse momentum of an event which directly depends on N by
P = Zf\il pt,. This behavior of an increasing p; per particle with multiplicity
indicates that some other physics could be going on. Increasing p; with N would
be equivalent to saying that if we did a survey that compared peoples height
and weight then increased the sample size, then everyone got heavier on average
by including more people in the survey. This idea is happening in particle and
nuclear collisions which is what we are interested in to see if some other type of
physics is going on. To measure this correlation we use an observable that is a
combination of the covariance of P, and N and the variance of multiplicity



D Cov(P;,N) — (pt>Va7“(N). (1)
(N)?

Here P, is the total transverse momentum of an event and N is the multiplicity.

The first term on the right hand side is the covariance between P, and N which

measures how much the two quantities are correlated with each other and is

defined by:

Cov(P;, N) = (P.N) — (P;){N). (2)

From Figure 1 we see that (p:) increases as (IN) increases for the no-jet case.
Because of this we expect the covariance to give a positive result since P, ~ N.
Like the height and weight example, where a taller person is generally heavier,
the more particles produced in the event the more P; there is. However, what
we are interested in focusing on is where it does not follow the typical trend to
see what else could be causing the behavior. To do this in (1) we subtract off
the variance of N multiplied by (p;) where

Var(N) = (N?) - (N)2. 3)

The reason we subtract off this term from the covariance is because P; directly
depends on N so fluctuations in P; should also depend on fluctuations in N. We
want to take out that dependence and look at what is left over for an indication
of some other physics going on in the collision. Statistics tells us that if the
particle sources are independent of one another than equation (3) approaches a
value of (N) and the second term in (1) approaches (p;)(N). This informs our
expectation of how D behaves. We expect that D is positive and decreases by
a factor of (N)~! as centrality increases. In thermal equilibrium the numerator
should approach zero [2]. Centrality is the measure of how much the two nu-
clei are overlapping with each other, the less centrality there is the less overlap
the two nuclei have when colliding which leads to less nucleons interacting with
one another. The more centrality a collision has, the more head-on it is and
more nucleons are participating in the collision process. The trivial case for
D is when all the particles produced have the same p;. If this happens then
covariance term simplifies to the (p;) variance term and D becomes 0. If we
want to write D in terms of time to measure the evolution of a collision then
we can write [2]



D = DyS + Dey(1 - 9). (4)

Where Dy is the value of D in the earliest moments of the collision and D, is
the value of D when the system is in local thermal equilibrium. Local thermal
equilibrium is when different sections of the system can have different tempera-
tures, but everything in each individual section has the same temperature. The
variable S is a survival probability which is the probability that a particle in the
system has no interaction with the remaining system. In other words, S =1 at
the beginning of the collision and decreases over time until it goes to zero. In
the equilibrium case, D is expected to vanish [2]. Central collisions are more
likely to reach equilibrium because they live longer and have more particles,
combining the expectations that D already trends like (N)~! and S — 0 with
more complete equilibration, We expect D to actually trend faster than (N)~1.

3 Analysis

To get an understanding of how D behaves we need to test this in a collision.
However, running nuclear collisions at such high energies takes a large amount
of time and money for one shot. To run the millions of events and get a lot
of data we can use UrQMD (Ultra-relativistic Quantum Molecular Dynamic)
which allows us to simulate nuclear collisions and read the data that comes out
of it. The events were given to me from W.J Llope at Wayne State University
where I was running my code on their high performance computing grid. There
is an assumption that come with UrQMD which is that it assumes the system is a
gas of particles and resonances. We used C++ and ROOT to do the calculation
of the observable and create histograms to see the results. Because UrQMD is
a model that simulates the scattering between particles, there is a chance that
some collisions have a long enough lifetime where partial thermalization can
happen and we expect D to show signs of this. All of our graphs and tables are
for 20 million UrQMD events of Au-Au collisions with a center of mass energy
200GeV per nucleon. our kinematic cuts for all the graphs are the following:
0.15 < pr < 2GeV, |n| < 0.5, and N is all charged particles. Instead of centrality
as our x-axis all of our graphs use Npq+ which is related to centrality but also
tells how many nucleons are participating in colliding with other nucleons. In
other words, the more participants there are in the collision the more centrality
it has.

4 Results

Our results show that from figure 2, D appears to be positive at the zeros in
the error bars, but because of their size it does not rule out negative values for
D. Also, D does decrease with centrality but figure 4 shows that D does not
decrease faster than (N)~! but it decreases slower than (N)~1. This result goes
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Figure 2: Observable D as a function of Np4.¢. Right figure is a zoomed in
version of the left figure with no error bars for shape clarity

against our expectation for how D trends with centrality. However, the value
of D is consistent with the zeros in the error bars, but We need better statistics
to confidently determine the value of D. Furthermore, D does show signs of
partial thermalization because of its decreasing behavior with centrality.

Table 1: The values below are obtained from the zeros of the error bars in figure

2.

Npart D-107* | Errors

14.3858 | 6.65 0.001609
27.3827 | 4.75 0.001386
47.7871 | 4.24 0.001266
76.8777 | 3.68 0.001207
116.735 | 3.36 0.001139
169.037 | 2.96 0.001172
237.268 | 2.58 0.001168
325.477 | 2.39 0.001039
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Figure 3: ND as a function of Npq,¢. Right figure is a zoomed in version of the
left figure with no error bars for shape clarity

Table 2: The values below are obtained from the zeros of the error bars in figure

2.
Npart (N)D Errors
14.3858 | 0.01325 | 0.03209
27.3827 | 0.01789 | 0.05224
47.7871 | 0.02836 | 0.08477
76.8777 | 0.04108 | 0.1348
116.735 | 0.05907 | 0.2084
169.037 | 0.07871 | 0.3118
237.268 | 0.1014 | 0.4587
325.477 | 0.1425 0.6197

5 Conclusion

When we started this research, we wanted to study the observable D in UrQMD
to find signs of partial thermalization in nuclear collisions. We had expectations
as to how D would behave. Initially, we thought that D would be positive and
decreasing with centrality faster than (N)~!. However, From the data I gathered
in UrQMD we can conclude that D appears to be positive but our large error
bars allow D to have negative values. There are blast wave calculations that
Gavin, Moschelli, and Zin do that assumes thermalization and typically give
negative values. We are skeptical about these values which is another reason for
doing this calculation with UrQMD to see if the result we get from it is consistent

with the blast wave calculations. If D trends faster than <—1{,> then (N)D should



be decreasing. Our data shows that (V)D is increasing with centrality which
means that our D trends slower than <—§[> and goes against our expectations.
This can possibly be due to jets which we do not distinguish between events that
have jets and events that do not. Events that do have jets could contribute an
increase in p; as we saw in the UA1 experiment. Jets are more likely to happen
in central collisions which could be why (N)D increases with centrality. Because
of our large error bars we are not confident to determine what our result of D
in UrQMD is at this time. Better statistics and more work is needed to narrow
down the value of D and describe its behavior in the future.
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