
GPU-accelerated Calculations of Hadron Spectra

from Heavy-Ion Collisions

Matthew Golden
Advisor: Dr. Ulrich Heinz

August 11, 2017

1 Introduction

Heavy-ion collisions pose a unique theoretical and computational challenge.
For each event, two heavy nuclei collide at large energies and leave behind a
fireball of nuclear matter. The fireball has a temperature over 145 MeV or 2
trillion Kelvin. At these temperatures, hadrons cannot form, instead the fireball
is a quark-gluon plasma (QGP). Computationally, an initial fireball is evolved as
a viscous fluid; it cools as it expands until it falls below the 145 MeV temperature
threshold and determines a chemical freeze-out surface. Hydrodynamic variables
are converted to hadronic spectra. Many unstable resonances are produced
through this condensation. These resonances decay to stable hadrons like pions
and protons before a final spectrum is produced.

To make computational progress, a large number of events needs to be simu-
lated. The observables from the simulated collisions form a statistical ensemble
to compare to experiment. It is very important to make computation time small
so more events can be computed and better statistics can be generated. The
iEBE package provides a complete resource for simulating a collision from gener-
ating initial conditions to calculating observables and a final particle spectrum.
iSpectra is contained within iEBE and is used to convert chemical freeze-out sur-
faces to hadron spectra. We have used CUDA C to accelerate these calculations
on a GPU from a boost invariant surface.

Throughout this paper, we use the convention that g00 = 1 and choose units
such that c = h̄ = 1.

2 Relativistic Hydrodynamics

The stress-energy tensor Tµν and the equation of state for the QGP contain
all of information of the fluid. The evolution of Tµν is not relevant to our work,
but the meaning of its components is. In viscous hydrodynamics, the stress-
energy tensor can be split using the timelike eigenvector Tµνuν = εuµ, where

1

we define uµ to be the fluid velocity and ε to be the energy density. We can
then decompose the tensor with its eigenvector.

Tµν = εuµuν − (P + Π)∆µν + πµν . (1)

P is the thermodynamic pressure and Π is the bulk viscous pressure. ∆µν =
gµν − uµuν is a projection tensor orthogonal to the fluid velocity. πµν is the
shear viscosity tensor. It is orthogonal to the fluid velocity πµνuν = 0 and is
traceless πµ

µ = 0.
These variables are evolved according to some hydrodynamic equations, and

the QGP equation of state is used to find the temperature of the fluid. The
QGP cools as it expands, and the conversion surface at 145 MeV is recorded.

3 Thermal Spectra

This 145 MeV surface marks the phase transition back to hadronic matter.
This phase transition is a smooth cross-over, so the rigid cutoff is computation-
ally imposed rather than physical. The challenge of converting hydrodynamic
variables into hadron spectra was solved with the Cooper-Frye formula [1].

E
dN

d3p
=

g

(2π)3

∫
Σ

d3σµ(x)pµf(x, p). (2)

The momentum distribution dN
d3p known from nonrelativistic physics is multi-

plied by energy to make it a Lorentz scalar, since d4p δ(E2−p2−m2)Θ(E) = d3p
2E

is manifestly Lorentz invariant. The integral (2) is over the entire conversion
surface Σ (with surface normal vector d3σµ(x) at point x) and depends on the
distribution function f(x, p). The distribution function is split into equilibrium
and nonequilibrium parts, f(x, p) = f0(x, p) + δf(x, p), where the equilibrium
distribution function is

f0(x, p) =
1

eβuµp
µ ± 1

. (3)

uµp
µ is the energy of the particle in the rest frame of the fluid, and β = (kT)−1.

The sign in the denominator is determined by the statistics of the hadron: −1
for a boson and +1 for a fermion. In the fluid rest frame where uµ = (1, 0, 0, 0),
these reduce to the standard Bose-Einstein and Fermi-Dirac distributions, but
we have expressed them covariantly so that they hold in any reference frame
where the fluid cell moves with four-velocity uµ.

The nonequilibrium deviation δf(x, p) arises from the viscous correction to
the stress energy tensor. It is some function of πµν and Π determined by which
approximation is being used for viscous hydrodynamics and to what order these
corrections are considered.

2

4 Resonance Decays

After a hadron is emitted from the fireball, it will not necessarily live long
enough to be detected. Heavy resonances will generally decay to lighter stable
hadrons like pions or protons.

We consider a general n-body decay in the rest frame of the parent resonance.
The momentum of the parent is Pµ and momentum of the considered daughter
particle is pµ. The other n − 1 daughter particles have momentum pµi , i =
2, . . . , n. The decays are required to conserve energy-momentum and obey the
mass relations pµi piµ = m2

i . Spin should also be conserved, but we take the
spinless approximation.

The energy and momentum of the the daughter particle of interest can be
written in terms of the invariant quantity s = (pµ2 + · · · + pµn)2. In the parent
rest frame, we write the daughter’s energy and momentum magnitude E∗ and
p∗.

E∗ =
M2 +m2 − s

2M
, (4)

p∗ =

√
[(M +m)2 − s][(M −m)2 − s]

4M2
. (5)

We make the approximation that decays are purely kinematic, and determined
completely by conservation laws. The decay phase space is a distribution of s
written g (s). The phase space is normalized to be the branching ratio b of the
decay. From this, we can derive the contribution to the daughter spectrum [2].

dN

pT dpT dφdy
= N

∫
ds g(s)

∫
d3P

Er
δ(pµP

µ −ME∗)
dNr

PT dPT dΦdY
. (6)

Here we have defined the left hand side to be the contribution to invariant
spectra. p2

T = p2
x + p2

y, φ = arctan
py
px

, and the rapidity y = arctanh pz
E . The

parent resonance has corresponding capital variables PT , Φ, and Y . It can be
shown the left hand side is equivalent to E dN

d3p . N is a normalization constant for

g(s). The delta function in the momentum integral ensures the correct energy
in the resonance rest frame.

In figure 1, the thermal and total spectra are plotted against pT for different
stable hadrons. For high pT , the spectra fall off exponentially. The proton
spectra overtakes the mesons at high enough pT due to the effect of radial flow
which pushes the heavier protons more strongly than the lighter pions to higher
transverse momenta.

These spectra can be integrated to obtain angular probability distributions
P (φ). Simulating collisions with fluctuating initial conditions gives a varying set
of these P (φ). The probability distributions themselves should not be compared
to experiment directly, rather one should use the complex Fourier expansion
coefficients vn [3].

P (φ) =
1

2π

[
1 +

∞∑
n=1

(
vne
−inφ + v∗ne

inφ
)]
. (7)

3

Figure 1: Invariant spectra of pions, kaons, and protons as a function of trans-
verse momentum pT , emitted with azimuthal angle φ = 0 relative to the direc-
tion of the impact parameter.

5 GPU Acceleration

A GPU provides immense computational power for parallel problems. A
single GPU contains thousands of cores capable of numerical manipulation.
They do not work completely independently, rather groups of cores called warps
carry out the same instructions in parallel. This allows parallelizable tasks to be
accelerated significantly. A parallelizable task is one with many computations
that can be done independently of one another.

The calculation of hadron spectra from a conversion surface is such a prob-
lem. There are many ways one could parallelize this problem. The straightfor-
ward way is to parallelize over momentum space. The hadron spectra at different
points of momentum space are independently computed with the Cooper-Frye
formula. This is not a good way to parallelize because there is a large amount
of information that would need to be referenced during loops over the surface.
Instead, it is better to parallelize over the surface. Since there are 35, 000 surface
cells and 500 points in momentum space for a particle, it made more sense to
parallelize over this larger set. The contributions to the spectra from each cell
are calculated in parallel by associating a cell with each thread on the GPU.
They are then added using parallel reduction, which scales like log(n) instead
of n. This reduction is carried out in two steps: a summation over all threads
in a block (a collection of communicating threads) and then a summation over
blocks.

An additional modification is the abandonment of an approximation used in
the original code. For numerical efficiency, the old CPU code grouped similar
particles with close mass and chemical potential and computed a single spectra
for these groups. This decreased computation time on the CPU by a factor
of 5, but it is an approximation that ultimately lead to a systematic error of

4

Figure 2: |GPU−CPUCPU | for the pion spectra at ϕ ≈ 0. The differences are on the
order of numerical precision.

several percent. Since on the GPU the computation time has been lowered, it
is no longer necessary to make this approximation, thus eliminating this small
systematic error.

The computation of decays of different resonances is, however, not indepen-
dent. If a resonance decays to a secondary resonance before finally decaying to
a stable particle, the first decay process should be computed before the second.
The parallelization should instead be carried out for independent decays. For
example, all direct decays to a proton are independent, and should be done in
parallel. There is a secondary parallelization that is also applied by parallelizing
over momentum space. This still has impact on the computation time of these
decays, but the nature of the problem requires some time for monitoring when
certain computations are complete.

Previously, the calculation of thermal spectra and subsequent decays took
31 minutes and 4 minutes, respectively, for a surface with 35, 000 cells. This was
for unparallelized code running on a single CPU core. After parallelizing over
the cells of the surface, the thermal spectra was calculated in 16.5 seconds. The
resonance contributions could only be parallelized to a certain extent, and went
down to 20 seconds. Overall, the process was reduced from 35 minutes to 36
seconds. This is an acceleration factor of 60, and will increase with surface size.
As surface size increases, the acceleration of thermal calculations will contribute
more to the overall acceleration and asymptotically approach an acceleration
factor around 100

This code was cross checked with CPU results, and fell within an acceptable
deviation. In figure 2, we plot the normalized difference |a−bb | where a is the
GPU result and b is the CPU result. This difference is of the order of one per
mille over most of the pT range but increases to about 10% for pT around 3.5
GeV. The source of this error is not definitely known, but it is suspected that
contribution may arise from the way sums are carried out on the CPU. On a
single CPU core, the sums are serial, and a small number is added to a much

5

larger running sum. However, on a GPU, the sums are parallel reductions which
add numbers of the same order of magnitude and reduce the impact of floating
point errors. In this sense, the GPU produces more reliable sums, but it is
unknown if this is the sole contributor to numerical differences.

6 Conclusion

GPU computation is powerful for parallel problems. Computing these spec-
tra faster allows for a GPU to compute over two thousand spectra in a day if
it is provided the surfaces to work with. This will help produce larger theoreti-
cal data sets for comparison with the (much larger) sets of experimental data,
allowing for a more precise analysis of heavy-ion collisions. This contributes to
the overall goal of the JETSCAPE collaboration to create a user-friendly and
efficient code package for simulating heavy-ion collisions.

References

[1] F. Cooper, G. Frye: Phys. Rev. D 10, 186, 1974.

[2] J. Sollfrank, P. Koch, U. Heinz: Phys. Lett. B252, 256, 1990.

[3] Sooraj Radhakrishnan Measurement of the correlation between flow harmon-
ics of different order in leadlead collisions at sNN=2.76 TeV with ATLAS.
Nuclear Physics A, 956, 328-331, 2016.

6

