
Experimental Effects on Rapidity Correlations

Warren Li
University of Missouri - St. Louis

Advisor: Dr. W.J. Llope
Wayne State University

August 11, 2016

Abstract

Rapidity correlations were studied to understand the phase diagram of nuclear matter.
Data from UrQMD-generated events were used. This model simulates heavy ion collisions
at various beam energies. Central collisions of Au nuclei at different beam energies were
analyzed using the normalized covariance R2. This paper discusses how rapidity correlations
are affected by experimental effects such as the variation of the collision vertex along the
beam pipe, the rapidity window in which the analysis is done, and experimental inefficiencies.
It was found that the correlation function is largely unaffected for increasing rapidity widths.
Small differences were due to the dependence of correlation on the average rapidity. When
the efficiency was applied, similar results were found and the variable remained insensitive
to single-particle inefficiencies.
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1 Introduction

The QCD phase diagram is not completely understood. For instance, the first-order phase
transition and critical point shown in Figure 1 are both speculative. The phase diagram is a
function of temperature (T ) versus baryochemical potential (µB). By colliding heavy ions at
relativistic speeds, particle production occurs at high temperatures. This results in a state
of matter known as Quark-Gluon Plasma (QGP), where constituent quarks and gluons are
free for a brief time. Eventually, particle production and inelastic collisions between particles
stop in a process known as chemical freeze-out. This is followed by kinetic freeze-out where
all particle momenta are frozen prior to hitting the detector. Understanding the QGP may
provide information about the core of neutron stars and the early universe approximately 10
µs after the Big Bang.

Figure 1: QCD phase diagram[1]

Experiments are carried out at the Solenoidal Tracker (STAR) at Brookhaven National
Laboratory’s Relativistic Heavy-Ion Collider (RHIC)[2]. There, collisions are performed in a
range of beam energies between 7.7-200 GeV. By varying the beam energy, one can “scan”
across the x-axis of this diagram since µB decreases with increasing energy.

The data in this paper are generated from Ultrarelativistic Quantum Molecular Dynamics
(UrQMD)[3], a Monte-Carlo simulation package that models heavy ion collisions. Our goal
of the STAR experiment is to search for the speculative phase transition in Figure 1. In
phase transitions, fluctuations increase. Thus, the study of the strength of fluctuations and
correlations is important for understanding the phase diagram.

The strength of correlations can be evaluated by analyzing a quantity called the covari-
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ance:
Cov(x, y) = 〈xy〉 − 〈x〉〈y〉 (1)

If the variables x and y are correlated, which means y increases as x increases, cov(x, y) >
0. When cov(x, y) < 0, the variables are anti-correlated and y decreases as x increases. A
covariance equal to zero signifies no correlation. In this paper, we study a normalized
covariance called R2:

R2 =
ρ2(y1, y2)

ρ1(y1)ρ1(y2)
− 1 (2)

which has the same behavior as covariance. We investigated how this variable depends on
experimental aspects such as the width of the rapidity window, the experimental inefficiencies
for measuring the particles, and z-vertex smearing. That is, collisions do not always occur at
the center of the detector, and therefore, the dependence on the rapidity of the measurement
efficiency is different for every event. This variability could produce additional fluctuations
and change the R2 values.

2 Variables

Collisions are classified by their impact parameter, b, which is the perpendicular distance
between the centers of the two nuclei. Collisions with b ≈ 0 are central or “head-on”
collisions, while collisions with larger values of b are peripheral collisions. In a peripheral
collision, particles that collide with other particles are called participants, while those that
miss are called spectators. For the following data, we have chosen “central” (0-5%) Au+Au
collisions, which correspond to impact parameters 0 < b < 3.2 fm.

The rapidity of a particle is defined as,

y =
1

2
ln

(
E + pz
E − pz

)
(3)

where E is the total energy, and pz is component of the momentum along the beam axis.
It is sometimes convenient to use psuedorapidity, which is equal to the rapidity if m � p
(where m is the mass of the particle):

η = − ln

[
tan

(
θ

2

)]
(4)

where θ refers to the angle between the particle 3-vector momentum and the positive z-axis.
Figure 2 outlines the process for generating plots using ROOT[4], a data-analysis frame-

work for C++. First, a multiplicity plot is generated from a Gaussian distribution giving
Nprotons/event. Then for each event, a rapidity between -1 to 1 is randomly assigned ac-
cording to a flat distribution. Pairs of particle rapidities (excluding self-pairs) are plotted to
create ρ2(y1, y2), and the tensor product ρ1(y1)ρ1(y2) is also calculated. Using the definition
of R2 in Equation 2, these 2D histograms are divided, and then 1 is subtracted from each
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bin. In such a simulation, one would expect R2 = 0 versus ∆y since there cannot be any
correlations between the protons when generated this way.

Figure 2: Histograms for randomly-generated rapidities

Shown in the upper left of Figure 2 is the multiplicity distribution per event for 200,000
events from 0-5% central collisions from the UrQMD model at 7.7 GeV. The upper middle
frame is the rapidity distribution in the range of -0.32 to 0.32 for particles sampled from
a flat distribution. Shown in the upper right figure is the numerator of R2, and the lower
left figure is the denominator. The lower middle frame shows R2, and indeed, the z-axis is
centered around zero as expected.

The lower right figure is a diagonally averaged plot of R2 (the lower middle figure). The
diagonal averaging is done as described in Figure 3, the same plot as in the lower right frame
of Figure 2. The bins along various ∆y values are averaged to produce 〈R2〉 as a function of
the rapidity difference y1 − y2.

When the multiplicities per event are small, this variable is not zero even when there are
no correlations. This can be corrected by subtracting a baseline value from all the bins on
the right side of Figure 3, which is calculated from the multiplicity distribution in Figure 2.
Specifically,

Rbs
2 =

〈n(n− 1)〉
〈n〉2

− 1 (5)

was subtracted to form a corrected 〈R2〉 −Rbs
2 versus ∆y plot.

We now turn to the results from the event generator UrQMD. This model contains all
of the hadronic physics processes involved in heavy ion collisions, but does not include the
first-order phase transition or critical point. It is however a fairly realistic model and is
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Figure 3: Averaging procedure

used by many experiments. Figure 4 shows plots for 500,000 UrQMD events at 7.7 GeV.
The frames in this plot have the same meaning as Figure 2. However, note that there are
strong correlations in the lower middle and right frames. This means that given a proton
somewhere in the experiment, it is likely that there is another proton ±0.7 units of rapidity
away. Likewise, the dip near zero means that there is a low probability of encountering a
proton with a small ∆y nearby.

Figure 5 shows 〈R2〉 versus ∆y for 7.7, 27, and 200 GeV for 200,000 events. There is
an interesting dependence on the beam energy (µB from Figure 1). As the beam energy
increases, the (anti)correlations decrease. However, the goal of this analysis is to study
experimental effects on the correlations. Therefore, for the remainder of this paper, we
concentrate on 7.7 GeV data where there are the strongest correlations.

Figure 4: 7.7 GeV plots
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Figure 5: From left to right, 7.7, 27, and 200 GeV

3 Results

In different events, the collision occurs at different locations along the z-axis. Therefore,
the experimental acceptance also moves with respect to z. Consequently, it is important to
understand where the experiment is as a function of the z-vertex in units of rapidity. Figure
6 shows a diagram of STAR and the relationship between the particle (ηp) and detector (ηd)
psuedorapidity for a positive z-vertex value as an example.

Figure 6: Diagram of the STAR detector[5]

By definition, from ηp, the particle polar angle is obtained by,

θp = 2 arctan (e−ηp), (6)
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and then the polar angle with respect to the detector is,

θd = arctan

(
Rd

z − zvtx

)
, (7)

where

z =
Rd

tan θp
. (8)

As an example, if z-vertex is at the center, one will always measure the particles between
−1 < ηd < 1, but as z-vertex moves to the right, |ηd| < 1 is not measured with the same
number of pad rows and the efficiency of those tracks decrease. Because of this experi-
mental effect, the region with the highest efficiency in rapidity or psuedorapidity changes
event by event. To understand this, we begin by understanding the relationship between
psuedorapidity and particle rapidity.

Shown in Figure 7 is the particle rapidity versus psuedorapidity for protons, kaons, and
pions. For pions, the lightest of the three particles, the graphs are more diagonal and
psuedorapidity and rapidity are nearly identical. For heavier particles however, these two
quantities diverge depending on the transverse momentum pT , as labeled. The greatest
efficiency occurs when |ηd| < 1. The range in rapidity that one can measure with high
efficiency depends on the width of the z-vertex cut. Thus, we tabulated the maximum values
for y with good detector efficiencies for a displaced z-vertex in Table 1.

Figure 7: Particle rapidity against psuedorapidity for protons, kaons, and pions and zvtx = 0

Given this information about the relationships between ηp, yp, and ηd, it is then rele-
vant to study how the strength of the correlations in the UrQMD events depends on the y
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Table 1: y ranges for various pT with the condition that |ηd| < 1 at zvtx = 0 and 30 cm

zvtx = 0, ηp = 1 zvtx = 30, ηp = 0.899
pT yp min yp max Particle pT yp min yp max Particle
0.4 -0.447 0.447 p+ 0.4 -0.499 0.392 p+

1.0 -0.777 0.777 p+ 1.0 -0.858 0.691 p+

2.0 -0.926 0.926 p+ 2.0 -1.016 0.830 p+

0.4 -0.683 0.683 k+ 0.4 -0.756 0.605 k+

1.0 -0.918 0.918 k+ 1.0 -1.008 0.822 k+

2.0 -0.977 0.977 k+ 2.0 -1.070 0.878 k+

0.4 -0.960 0.960 π+ 0.4 -1.051 0.861 π+

1.0 -0.993 0.993 π+ 1.0 -1.087 0.893 π+

2.0 -0.998 0.998 π+ 2.0 -1.092 0.897 π+

window used for the analysis. This is shown in Figure 8. In each frame of this figure, the
same experimental events are used. However, the width of the rapidity window is gradually
increased in each frame. The comparison of these different windows is shown in the bottom
right frame.

One sees that the correlation function for 〈R2〉 is similar when proceeding to larger
rapidities. The slight difference between these values is caused by the dependence of the
correlation on the average rapidity, which can also increase when increasing the ∆y window.
This is illustrated in Figure 9. As the rapidity window expands, which is shown by the square
boxes, both ∆y and 〈y〉 increase. A small ∆y at mid average rapidity is not the same as
small ∆y at large average rapidity. Since the correlations can depend on 〈y〉, one would not
expect the plots to be identical. It is clear however that the effect on 〈R2〉 from reasonably
sized ∆y windows is rather small.

Figure 8: 〈R2〉 vs ∆y for various y-widths
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Figure 9: When increasing the width on ∆y allowed in the analysis, one also increases 〈y〉

So far, events were studied from a model where every particle produced in a collision is
measured. In reality, this is not the case. Modern detectors cannot measure every particle
emitted due to cracks in the detector (for example, to allow for signal cables) and because
particles with low pT spiral in the magnetic field. This means that slowly-moving parti-
cles have low efficiencies. We are therefore interested in understanding how experimental
efficiencies impact the 〈R2〉 values.

Note that according to Equation 2, the variable studied is a two-dimensional distribution
divided by the tensor product of two one-dimensional distributions. Therefore, the values of
R2 go as,

ε2

ε ∗ ε
= 1 (9)

so R2 is expected to be insensitive to the single-particle inefficiencies. We now test this with
UrQMD events.

For every particle that is emitted by the event generator, a random number is thrown.
This number is then compared to tabulated efficiency curves as a function of pT , y, and
centrality. If the efficiency is larger than the random number, the particle is measured.
Otherwise, the particle is discarded. This effectively applies the inefficiencies to the UrQMD
simulated events.

Shown in Figure 10 is the value of 〈R2〉 for three cases: a perfect detector (lower left), a
pT cut applied (upper right), and a parameterized plot as a function of pT , y, and centrality
(upper left). The effect of the efficiency on the variable is small as expected because the
single-particle efficiencies divide out. Slight differences seen are due to the fact that the
parameterized efficiency effectively includes a rapidity cut, which effectively narrows the
y-window and results in a similar effect as described previously in Figure 9.
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Figure 10: Comparison of experimental acceptance to a perfect detector

4 Conclusion

The QCD phase diagram is speculative. However, by changing beam energy, one can “scan”
across the x-axis of the diagram. In phase transitions, fluctuations increase. Thus, the study
of the strength of fluctuations and correlations is important for understanding the phase
diagram. In this study, experimental effects on two-particle correlations were analyzed using
the normalized covariance R2. We started by understanding the relationship between particle
psuedorapidity and rapidity given a z-vertex value. These two quantities do not agree for
heavy particles. The maximum values for y with good detector efficiencies for displaced
z-vertex values were tabulated.

Next, we studied how the strength of correlation in UrQMD events depends on the
width of the y window used for the analysis. It was shown that the correlation function for
〈R2〉 is largely unchanged when proceeding to larger rapidity windows. The slight difference
between values were caused by the dependence of correlation on the average rapidity. Finally,
inefficiencies were applied. We find that single-particle efficiencies divide out, and slight
differences seen are due to the fact that parameterized efficiency includes the dependence of
the efficiency on the rapidity, which effectively narrows the y-window.
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