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1 The Physics

While researching the momentum fluctuations of heavy ion collisions, the focus is on
the time from the collisions of the atoms, to about 1 femtosecond after. This is a
very small window of time, 1∗10−15 seconds. It is during this time just after colliding
while the atoms are speeding away from each other, when a state of matter known as
Quark-Gluon plasma exists. Imagine inflating a balloon, it does not have a uniform
pressure throughout while expanding, there are areas that have higher pressures and
areas of lower pressures. When the balloon pops, the areas of higher pressure will
speed outward at a faster rate than the areas of lower pressure. This means that
the momentum of the air is not uniform when the popping occurs. Now take this
concept and apply it to the collision of atoms. Just after the collision, the atoms are
speeding away before the constituents have time to expand outward. When they do,
there is a fluctuation of the momentum over the volume of the collision area. This
fluctuation is what is being focused on.

Then the collision area begins to expand, there is a fluctuation between the
momentum of different areas. Due to the viscosity, the faster moving areas will
transfer energy to the slower moving areas and will begin to slow down. The areas
that are moving slow will increase their speed, this brings the whole system to an
equilibrium. The correlation function of the momentum of the system will go to
zero as time goes to infinity, however, in reality it will not. Brownian motion is the
random zig-zag motion of a heavy particle suspended in a fluid and this effects the
momentum correlation of the collision system. Instead of the correlation function
of the momentum going to zero, it will reach a lower limit, due to this Brownian
motion.

The equation for this state was derived by Dr. Gavin and Dr. Moschelli to be:
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Where transport coefficient τπ is a relaxation time for the shear modes. This is
given by τπ = βν. ν is the kinematic viscosity of the system and is given by ν = η/Ts.
These are constant parameters that were previously used in Dr. Gavin’s and Dr.
Moschelli’s paper [1]. The work I performed did not use constant parameters, but
instead τ ∗π and ν∗. These are similiar to the τπ and ν above but have time-dependent
denominators. τ ∗π = τπ/(1 + κτπ/τ0) and ν∗ = ν/(1 + κτπ/τ0) from equation (1).
There are two parts to this equation, a wave equation and a diffusion equation. This
allows a hypothesis to be formed as to how this wave will react and change through
time. The wave equation side will cause the wave to propagate outwards while the
diffusion equation side will cause the wave to spread and flatten through time.

With both of the behaviors at work, it can be hypothesized that the wave will
begin to split and propagate while also widening and flattening. The question then
can be asked, how will this wave behave through time? This is what our program
does. It takes into account the various input variables and outputs graphs for the
system. We are trying to match these graphs to the data collected from the STAR
experiment at RHIC. You can see how the wave changes with time and the STAR
data overlaid in figure 1.

2 What I did

When I first arrived, I had little to no knowledge of programming. Being that the
main code is written in C++, I spent my first few days acclimating myself to the
language and format. My understanding of C++ truly began to develop when I
was given the unfinished, main code to look over and begin to work on. I made
a few test programs with simple outputs to help understand the syntax. At this
time, I was also reading through the first few chapters of Ramona Vogt’s text, Heavy
Ion Collisions, to introduce myself to what the physics is behind this problem we
are tackling. Before long, I began to get a grasp on the main code as well as the
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Figure 1: C vs. ∆η

accompanying functions. I then began to choose a specific parameter to slightly
change and see how it effects the output, as well as put this output into ROOT and
see how the graphs are translated and adjusted while also comparing them to the
data collected by the STAR experiment. By doing this parameter by parameter, I
was really able to begin to view these variables not as simple numbers in an equation,
but as physical conditions that really changed what our output collision information
meant. This was the first time in the ten weeks of the REU that I actually felt like
I was grasping the content.

It was this moment that we ran into our first real challenge. To test a different
set of input parameters, the main code had to be recompiled each time a new set
were input. This added about thirty seconds onto the program run time of about
two minutes which did not seem problematic initially, but when testing a wide range
of parameters, this is a great amount of down time. The idea of using an input text
file arose, which would prevent the main code from needing to be recompiled each
time. I made the input text template and began to edit the main code to read the
input files from this template. It finished quite easily without any major obstacles,
and now were were able to just change the values of the variable on a text file instead
of having to edit the main code each time. This was used for some time to perform
more runs, but this process was still very time consuming.

It was then decided that a shell script should be written to allow the program
to scan through a range of variables without needing the user to change them after
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each run. This is where I needed to begin to learn bash and the command line
language. This was my first introduction to using a terminal, the command line
interface for the UNIX system of the Mac. I really enjoyed learning this because
it gave me a deeper understanding of the foundation of the Mac operating system
and how to interact with the computer in a different, more native way. Using this
new knowledge, I was able to streamline my interactions with the computer when
coding, compiling, and operating the main code. I successfully created the script
after dealing with a handful of simple syntax errors and begin to implement this new
input concept. We decided on ranges to scan through the initial parameters, τ0, TF ,
τFc, and let the it loose. Because the script would run through a range for each of
the three parameters, it would take a very long time, sometimes up to two days, for
the program to finish scanning through the three dimensional matrix. I would spend
these down times reading more of Vogt’s book and also looking though the recently
published paper submitted by Dr. Gavin and Dr. Moschelli. Both of these texts
continued to further my knowledge on the topic we were working with.

Once the script had run through a handful of ranges, the output graphs are
compared to the data obtained from STAR. I sifted through all the output data
and focused on the runs with a low χ2 which correlate to the best fitting initial
parameters. I programed the script to run through the ranges for τ0, TF and τFc
while β was set to 5, 10 and 14. Taking the runs with the best fitting parameters,
the ones with the lowest χ2, the output graphs were compared between the different
βs. It is very interesting to see how β has an effect on the graph shape. Up to this
point, I had performed these scans with κ turned off, meaning the initial conditions
were constant. Running the program for constant initial conditions, κ being off,
was something that Dr. Moschelli had already spent time doing. We kept κ off
so we could be sure the script and main program were working correctly. I then
turned κ on, causing the conditions to change with time and this effected the output
significantly. The previous scans that had been performed had to be rerun now that
we had dynamic initial conditions.

After spending quite a bit of time analyzing the new scans’ graphs and trying to
interpret what they mean, I came across a problem that I had not noticed before. One
of the variables, ηChoice, had not been adjusted for κ being active. This meant that
all of the scans done with κ on had to be scrapped and rerun to get correct results.
Again for the third time, the scans had to be rerun; I was essentially a professional
at running these scans by then. After that fiasco, I noticed a few characteristics arise
while analyzing the new outputs. There seemed to be a correlation between β and
τ0. To get the best χ2, lower βs seemed to favor a lower τ0. I also noticed that to
get the best χ2 for each of the βs, a higher τ0 favored a lower TF , and a lower τ0

4



favored a higher TF . This begins to show an interesting relationship between these
three variables. By noticing these patterns, it can be hypothesized that well-fitting
runs with a low β should have a low τ0 and a high TF . Inversely, well-fitting runs
with a high β should have a high τ0 and a low TF . Taking this a step further, it
seemed that τFc had almost no effect on the χ2.

The somewhat disturbing characteristic about our results up to this point was
that it seemed the data from the STAR experiment could be fit relatively well with
any value of β, when paired with the right τ0 and TF . With the previous hypothesis
in mind, it was decided that the best course of action would be to code the pro-
gram to scan through β as well as the other variables. After it was written to scan
through the extra dimension, β, a few short test scans were ran. These short-range
scans gave rise to interesting results; results that hinted at following our hypothesis.
After some analysis, I began to have the idea to command the script to perform a
large run, scanning though a a very wide range of β, τ0, TF and τFc. After doing
some calculation, it was estimated that doing a scan of this magnitude would take
approximately four weeks time. With only two weeks left in the REU, I had to figure
out a way to shorten the time span this would take to run. With the help of Dr.
Moschelli, a quit process was added into the code. This meant that during each
individual run, if the most central collision had a χ2 that was higher that an upper
limit we set, it would quit that entire run and move onto the next set of parameters
in the scan. This greatly reduced the amount of time for the scans because it would
only perform the runs that had decent χ2s.

With the new process implemented, the large scan was initiated. While the run
time without the quit process was estimated to be around 27 days, the scan with
quit process only took about four days. After completion, there were about 4,800
runs that got decent χ2s out of a total of 22,800 runs in the scan. Now we finally
had a large pool of runs with essentially ever combination of parameters possible.
This scan revealed many interesting concepts. The top thirty best fitting runs all
had βs around five and τ0s around one. Also intriguing are the facts that the top
600 runs had a TF of 0.15 and τFc still continued to seemingly have no effect on the
χ2. I created a graph of β vs. χ2 of the runs with a χ2 lower than 150, with the the
different values of τ0 colored by range:
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It can be seen that there seems to be a relationship between β and τ0. When this
graph is focused on just the runs with a χ2 lower than fifty, this relation seems more
apparent:

So although well-fitting parameters can be obtained from almost any value of β
in the range of two through twelve, the best fitting parameters seem to be when β
is approximately five, τ0 is approximately one, and TF is 0.15. When looking at the
C vs. δη graphs for all the centralities, the effects of β can be seen. When β=2:
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When β=5:
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When β=11:
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When β is two, the graph fits the width well but does not fit the shoulders of
the top and when β is eleven, the shoulders are fir well but the width is too skinny.
It seems that when β is five is when the graphs fit well over the entire shape. This
problem will be further studied by looking into which of these β values seem the
most physically acceptable and how this holds up to other inquiries into this state
of the heavy ion collision.
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