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Abstract	
	
	

Modern	Graphics	Processing	Units(GPUs)	have	an	inherent	architecture	that	can	be	

exploited	for	high	performance	computing	in	addition	to	their	original	purpose	of	rendering	

graphics.	The	GPU	has	many	features	that	support	parallel	computing	including	its	highly	

multithreaded	architecture	and	high	memory	bandwidth.	Parallel	computing	can	be	an	optimal	

solution	to	performing	multiple	calculations	at	a	high	speed.	The	purpose	of	parallel	computing	

is	to	reduce	the	delay	between	inputting	a	process	and	yielding	an	output	and	to	increase	the	

number	of	processes	that	can	run	through	a	system	simultaneously.	This	is	referred	to	as	

reducing	the	latency	and	improving	the	throughput	of	a	program.		

This	paper	examines	various	features	of	the	GPU	and	how	to	optimize	certain	processes	

in	order	to	exploit	these	features	to	render	high	computation	speed.		A	code	that	simulates	the	

physics	of	a	heavy-ion	collision	was	examined	to	port	certain	functions	with	high	computations	

to	the	GPU.	However,	upon	examining	the	code,	many	functions	were	recursive.	While	modern	

GPUs	support	recursion,	recursive	processes	on	the	GPU	may	not	take	advantage	of	the	

massively	parallel	architecture	by	running	in	parallel.	In	order	to	eliminate	recursion,	a	heap	

tree	structure	was	used	to	process	the	recursive	calls.	The	goal	of	this	research	was	to	remove	

recursion	from	the	CPU	version	of	code	in	order	to	utilize	the	highly	multithreaded	architecture	

of	the	GPU	to	optimize	the	performance.			
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Introduction	
	

The	highly	multi-threaded	architecture	of	a	GPU	can	be	utilized	to	significantly	reduce	

the	time	it	takes	to	process,	and	the	number	of	processes	that	can	run	through	a	system	

simultaneously.	Due	to	the	multi-threaded	architecture,	parallel	computing	can	be	used	and	

threads	can	be	assigned	a	specific	work	load	to	process	in	parallel	with	other	threads.		

The	central	processing	unit	is	the	processor	of	the	computer	that	executes	the	software	

instruction.	It	processes	sequentially,	which	means	every	event	is	dependent	on	the	completion	

of	the	prior	event.	It	can	be	found	in	phones,	dvd	players,	cars,	washing	machines,	and	etc.	The	

graphics	processing	unit	is	generally	known	for	rendering	graphics	and	most	often	used	for	

gaming.	Different	properties	of	the	GPU	make	it	suitable	for	performing	computations	at	a	

much	higher	speed	than	the	CPU.	In	order	to	utilize	a	GPU,	the	CPU	can	act	as	a	co-processor.	

While	some	events	can	run	more	efficiently	on	a	GPU,	others	are	better	handled	by	the	CPU.		

A	CPU	consists	of	a	few	cores	optimized	for	sequential	processing.	The	GPU	has	a	

massively	parallel	architecture	consisting	of	thousands	of	smaller	cores	designed	to	handle	

multiple	tasks	simultaneously.	The	GPU	also	has	high	memory	bandwidth,	which	refers	to	the	

rate	data	can	be	read	from	or	stored	in	memory.		Two	characteristics	of	the	GPU	can	be	

problematic;	the	first	one	is	that	the	GPU	and	host	memories	are	typically	disjoint.	This	requires	

explicit	data	transfer	between	the	two,	whenever	the	CPU	needs	to	collect	data	or	the	GPU	

needs	to	process	it.	The	second	characteristic	is	that	the	GPU	does	not	adhere	to	the	same	

accuracy	standards	as	the	CPU.	Therefore,	results	from	the	GPU	must	always	be	cross-checked	
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with	results	from	the	CPU.	This	specific	obstacle	however,	was	addressed	by	Nvidia	in	newer	

versions	of	their	releases.	(Barlas		2015).	

The	main	advantage	of	using	the	GPU	is	to	utilize	its	ability	to	perform	parallel	

computing,	which	allows	for	events	to	run	simultaneously.	This	basically	refers	to	the	idea	of	

running	multiple	events	at	the	same	time	without	requiring	the	need	for	prior	events	to	be	

complete.	The	multi-threaded	architecture	of	the	GPU	is	what	allows	for	the	implementation	of	

parallel	computing.	Multithreading	refers	to	to	the	execution	of	a	sequence	of	programmed	

instructions	within	threads	that	execute	independently.	The	goal	is	to	decrease	the	delay	

between	inputting	a	process	and	having	an	output,	and	to	increase	the	number	of	processes	

that	can	pass	through	a	system	simultaneously.	This	is	also	referred	to	as	reducing	the	latency	

and	improving	throughput	(Fanz,	Kaufman,	&	Yoakum,	2004).	

Compute	Unified	Device	Architecture	(CUDA)	
	

The	hardware	architecture	of	the	GPU	requires	an	extension	language	to	utilize	it	

through	an	efficient	programming	methodology	(Hemalatha	&	Kodada,	2013).	Compute	Unified	

Device	Architecture	(CUDA)	is	a	general	purpose	parallel	computing	platform	and	programming	

model.	CUDA	is	used	as	an	extension	to	C	programming.	The	most	efficient	way	of	exploiting	

the	architecture	of	the	GPU	is	to	utilize	a	large	number	of	threads	that	execute	multiple	

processes	concurrently.		CUDA	uses	kernels	and	threads	to	execute	and	access	data	from	

memory.	It	can	access	data	from	multiple	memory	spaces	during	execution.	CUDA	organizes	

threads	into	blocks,	which	are	then	organized	into	threads.	Every	thread	is	given	a	specific	

position	identified	by	the	size	of	each	block,	the	size	of	each	grid,	threadID	(position	of	thread	in	
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block),	and	blockID	(position	of	block	in	grid).	This	allows	a	thread	to	recognize	its	workload	or	

assignment	(Sander,	Kandrot,	&	Dongarra,	2015).		

Methods	
	
JETSCAPE	
	

This	research	utilized	a	portion	of	code	from	the	Jet	Energy-loss	Tomography	with	a	

Statistically	and	Computationally	Advanced	Program	Envelope	(JETSCAPE).	It	simulates	the	

physics	of	a	heavy	ion	collision.	The	Shower	function	starts	with	an	initial	parton.	It	then	

recursively	splits,	and	generates	a	shower.	The	code	for	this	simulation	is	designed	to	use	

information	for	a	specific	parton	including	the	parent	ID,	location,	and	distance	to	predict	the	

location,	and	distance	of	the	partons	that	split	from	it.	As	this	process	occurs	many	times,	it	

forms	a	shower.		

High	Computation	Functions		
	

Various	functions	in	the	code	were	analyzed	for	processes	that	require	high	

computational	power	and	the	majority	of	the	run-time.	The	shower	function	requires	the	

highest	computation	time	and	performed	the	majority	of	the	work	during	run-time.	It	initially	

begins	with	one	parton	then	keeps	splitting	the	parton	until	it	cannot	split	anymore,	which	is	

determined	by	energy.	This	generates	a	shower.	It	is	often	easy	to	recognize	a	process	that	

requires	high-computation	when	it	is	iterative.	However,	the	shower	function	was	recursive.	

There	were	two	recursive	calls	within	the	function	that	had	to	be	removed	in	order	to	fully	

utilize	the	advantages	of	the	GPU.		A	recursive	process	is	dependent	on	the	completion	of	

another	process	to	continually	build	on.		
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The	purpose	of	the	GPU	is	to	perform	multiple	calculations	that	are	independent	of	each	

other.	In	order	to	do	that,	the	recursion	must	be	removed	and	replaced	with	an	iterative	

process.	In	this	case,	the	parameters	for	the	recursive	call	can	be	stored	in	an	array	which	can	

be	passed	back	into	the	function.	Originally,	it	made	sense	to	store	the	values	of	the	recursive	

call	in	the	S	array.	The	S	array	stored	the	starting	point	for	every	parton	in	the	shower.	The	

struct	of	arrays	represented	by	S	stored	various	parameters	including	each	partons	parent	ID,	a	

counter,	the	current	index	of	the	array,	the	location,	distance,	and	other	values	that	were	

calculated	according	to	the	parton	being	processed.	However,	after	extensive	research	on	this	

process,	it	made	more	sense	to	define	a	new	array	of	structs	that	would	store	the	recursive	

calls.	This	array	can	then	be	copied	to	the	original	array	being	used.	The	recursive	call	was	

represented	by	the	following:		

shower_vac	(c_line,	pid_a,	nu_s1,	t0_in,	z_g*z_g*t_g,	nkx,	nky,	loc+distance,	next_lead)	

	

To	store	the	parameters	of	this	recursive	call	in	an	array,	a	struct	of	arrays	was	created	

with	every	parameter	indicated.	Additionally,	another	parameter	(is_valid)	was	initialized	to	

represent	whether	or	not	the	current	parton	would	be	splitting	in	the	next	iteration.	The	value	

is	initialized	to	false	and	only	set	to	true	when	the	code	reaches	the	point	where	the	values	are	

stored	in	the	array.		The	array,	SV1,	was	initialized	as	show	below:			

	 	 SV1[i_call1].c_line	=	c_line;	

	 	 SV1[i_call1].pid_a	=	pid_a;	

	 	 SV1[i_call1].nu_s1	=	nu_s1;	

	 	 SV1[i_call1].t0_in	=	t0_in;	

	 	 SV1[i_call1].z_g2t_g	=	z_g*z_g*t_g;	
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	 	 SV1[i_call1].nkx	=	nkx;	

	 	 SV1[i_call1].nky	=	nky;	

	 	 SV1[i_call1].locdist	=	loc+distance;	

	 	 SV1[i_call1].next_lead	=	next_lead;	

	 	 SV1[i_call1].is_valid	=	true;	

	

In	order	to	ensure	that	a	process	does	not	assign	any	values	into	the	array	when	a	

parton	stops	splitting,	the	Boolean	variable,	is_valid	was	used.	This	variable	keeps	track	of	

whether	or	not	the	current	parton	will	split	in	the	next	iteration.	A	loop	was	defined	to	check	if	

is_valid	is	false.	If	it	is,	it	increments	the	counter	then	continues	to	the	next	iteration,	skipping	

the	assignments	to	the	array.		

Heap	Tree	Implementation	
	
	 The	two	recursive	calls	in	the	function	represent	the	two	children	of	the	parent	from	the	

original	function	call.	With	every	recursive	call	to	the	function,	the	parton	is	splitting	to	form	

two	children.	This	was	implemented	in	an	array	with	a	heap	tree	representation.	The	formula	to	

determine	the	children	of	the	parent	in	a	heap	tree	was	used	to	define	the	location	in	the	array	

to	assign	the	children.	For	the	first	child,	the	parent	index	was	multiplied	by	2	and	1	was	added	

to	that.	The	parent	index	was	multiplied	by	2	and	2	was	added	to	that	in	order	to	determine	the	

location	for	the	second	child.	This	is	represented	in	Figure	1,	with	the	black	filling	showing	the	

parent,	and	the	grey	filling	representing	the	children.	Node	1	is	the	parent	of	3	and	4,	which	can	

be	calculated	using	the	formula	mentioned	earlier.				
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Figure	1:	Heap	Representation	in	an	array.	Node	1	is	the	parent	of	nodes	3	&	4	which	are	
calculated	using:	parent	ID	*2	+1	&	parent	ID	*2	+2.	

	
	

The	heap	representation	was	implemented	in	order	to	have	a	process	that	would	run	efficiently	

when	ported	to	the	GPU.	Recursion	did	not	take	advantage	of	multiple	threads	running	

simultaneously.	However,	with	the	new	iterative	method,	every	process	that	is	in	the	same	row	

of	the	heap	would	run	in	parallel.	Every	row	in	the	heap	structure	includes	the	parents	of	the	

next	row,	which	stores	double	the	number	of	nodes.	This	means	that	as	the	heap	grows,	

depending	on	the	number	of	events	run,	more	processes	can	be	run	in	parallel,	which	will	effect	

the	run-time.		

Array	Compression	
	
	 The	recursive	algorithm	implements	a	pre-order	traversal	of	the	partons.	This	traversal	

does	not	keep	track	of	the	right	child	as	the	array	fills	up.	However,	when	storing	into	an	array	

through	a	counter	that	increments	by	1	after	every	iteration,	every	position	in	the	array	is	filled.	

Using	the	formula	for	a	heap,	every	node	is	processed	regardless	of	whether	or	not	the	parton	
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is	splitting.	This	leaves	many	empty	nodes	and	uses	up	much	more	memory	than	the	recursive	

version.	To	deal	with	this	issue,	the	array	can	be	compressed	to	get	rid	of	the	empty	nodes.	This	

was	implemented	after	the	call	to	the	shower	function	in	the	main	function.	The	code	loops	

through	the	array	to	find	an	empty	node	and	assigns	it,	index	i.	It	then	continues	to	increment	

until	it	finds	the	next	true	node	and	assigns	it	index	j.	Then,	index	j	is	copied	to	index	i	and	the	

process	is	repeated	until	the	counter	reaches	the	value	of	i_line,	the	counter	for	the	SV	array.	

This	compresses	the	array	by	removing	all	the	empty	nodes	and	copying	the	full	nodes	to	their	

positions.	The	following	pseudo-code	represents	the	iteration	through	the	array	to	compress	

the	nodes	and	update	the	printed	size	of	the	array.		

for	(k<=	i_line)	
{	
	 if	the	node	is	true	(contains	information)	
	 	 continue;	
	 else	if	the	node	is	false	(empty)	

{	
i	=	k+1;	
while	i	<=	i_line	the	node	is	empty	

	 	 	 i++	
if(i	<	i_line)	

	 	 	 {	
	 	 	 Assign	S[i]	values	to	S[k]	
	 	 	 Assign	F[i]	values	to	F[k]		

	
	 	 	 Set	the	i	node	in	the	heap	to	false	
	 	 	 new_i_line	=	k+1;	
	 	 	 }	

}	
}	
i_line	=	new_i_line		

	

This	also	solves	the	issue	of	having	a	vastly	different	value	for	i_line	in	the	recursive	version	and	

the	iterative	version.	The	value	of	i_line	is	used	to	calculate	the	mean	number	of	shower	
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partons.	After	assigning	i_line	to	a	more	accurate	value,	represented	by	index	i,	the	mean	

number	of	shower	partons	was	aligned	with	the	original	code.	The	array	compression	is	

represented	in	figure	2.		

	

Figure	2:	Array	Compression	–	index	j	is	copied	to	index	i	(an	empty	node)	
	

Results	
	

The	code	was	run	to	compare	the	average	values	with	those	of	the	original	code,	in	

order	to	determine	whether	or	not	the	changes	made	maintained	accurate	results.	Every	time	

the	code	is	run,	a	random	number	generator	is	used	to	process	the	events.	Therefore,	there	is	

no	specific	measure	of	how	similar	the	data	is.	The	results	were	just	tested	for	similar	values.	

Figure	3	depicts	the	different	results	for	the	recursive	and	the	iterative	version.	The	time	taken	

to	process	100,000	events	with	the	iterative	version	took	about	0.1	minutes	longer.	This	could	

be	a	result	of	compressing	the	array	after	processing	the	shower	function.	However,	decreasing	

the	amount	of	memory	required	to	store	the	information	for	every	parton	compensates	for	the	

difference	in	time.	The	code	calculated	the	mean	number	of	shower	partons,	detected	partons,	

energy	and	virtuality.	In	both	versions	of	the	code,	these	averages	were	not	more	than	

approximately	1	value	apart.		
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When	the	terminal	processes	the	code,	an	error	appears	continuously	until	all	the	

events	are	processed.	The	error	reads,	Issues	with	z_g	in	corrector.	This	refers	to	an	issue	with	

the	S	array	assignment.	The	corrector	looks	through	the	S	array	and	looks	for	the	children	that	

match	up	with	every	parent.	Since	the	iterative	version	uses	a	different	formula	for	assigning	

the	children,	the	array	was	compressed	to	get	rid	of	this	warning.	However,	despite	the	array	

compression,	the	corrector	continues	to	complain	about	the	assignment	in	the	S	array.	This	

error	exists	because	when	the	array	is	compressed,	the	parent	IDs	are	not	properly	updates.	

Therefore,	the	code	is	looking	for	the	parent	in	the	wrong	location.		

	 Recursive	Version	 Iterative	Version	
Mean	no.	of	shower	partons	=	 11.5158	 12.7654	
Mean	no.	of	detected	partons	=	 2.72871	 2.73125	
Mean	energy	of	detected	partons	=		 75.2037	 75.0583	
Mean	virtuality	of	detected	partons	=		 10.7708	 11.3777	
Mean	energy	outside	cone	of	one	radian	=		 0	 0	
Mean_max_p	=		 45.5764	 45.5523	
Mean	max	virt	=		 1.9568	 1.95718	
Time	taken	in	minutes	:		 52.8901	 52.9103	
Average	time	per	event	in	seconds	:		 0.0317341	 0.0317462	
Average	#	of	events	/	second	:		 31.5119	 31.4999	
	
Figure	3:	Results	for	running	100,000	Events		

	

Conclusion	
	

Due	to	the	time	constraints	in	conducting	this	research,	and	the	number	of	obstacles	

encountered,	the	results	were	limited.	The	results	of	removing	the	recursion	from	the	CPU	

proved	to	be	consistent	with	the	results	of	the	original	code.	Since	the	results	are	based	on	a	

random	variable	and	the	accuracy	is	dependent	on	the	number	of	events	run,	running	one	

hundred	thousand	events	with	very	similar	averages	means	the	results	were	consistent.		
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In	the	future,	this	research	will	be	applied	to	other	functions	within	the	code.	The	

recursion	will	be	removed	from	the	function	being	called	in	the	shower	call.	This	recursive	

process	may	be	removed	through	an	implementation	of	Simpson’s	rule	to	approximate	the	

integration.		The	array	compression	will	also	be	optimized	to	properly	compress	each	array	

after	removing	recursion.	Eventually,	the	code	will	be	made	ready	to	be	ported	to	the	GPU.	This	

will	require	more	planning	and	research	to	be	done	in	order	to	determine	the	most	efficient	

way	of	using	the	blocks	on	the	GPU	to	optimize	the	code.	While	the	code	can	be	transferred,	

specifying	each	threads	ID	and	determining	the	number	of	blocks	that	will	be	used	will	also	

have	an	affect	on	how	much	speedup	can	be	obtained.		
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