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I Abstract

In the past, charged current quasielastic (CCQE) neutrino-nucleus scattering data from the
MiniBooNE experiment was analyzed assuming the Relativistic Fermi Gas (RFG) nuclear
model [1]. Experiments suggest that nucleons in CCQE scattering can have high-momentum
tails in their distribution. This effect is not accounted for in the RFG model, but is accounted
for in the Correlated Fermi Gas (CFG) model [4]. This paper will detail the process of
implementing the CFG model to CCQE neutrino-nucleus scattering data. Before the CFG
model may be applied, a current Mathematica code must be modified to account for extra
regions in the nucleon momentum distribution that result from the inclusion of the high-
momentum tail. The dozen or so different possible kinematic cases for neutrino-nucleus
scattering are addressed, compared to the single case of the RFG model.

II Introduction

MiniBoone is a particle detector at Fermilab which was constructed for the objective of
observing a phenomenon known as neutrino oscillations, wherein neutrinos of one lepton
flavor “oscillate” to another lepton flavor while in flight. The signal interaction used to
detect these oscillations is CCQE neutrino-nucleus scattering,

νµ + n→ µ− + p (1)

νµ + p→ µ+ + n (2)

where a neutrino (anti-neutrino) collides with a nucleon to produce another nucleon and that
neutrino’s characteristic charged lepton (anti-lepton). The evidence for neutrino oscillations
is that muon neutrinos are sent to a detector and electrons appear, suggesting that the
muon neutrinos change flavor to electron neutrinos and produce electrons when they scatter.
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When studying neutrino oscillations an understanding of CCQE neutrino-nucleus scattering
is imperative. Multiple levels of interactions are present within CCQE scattering. At the
deepest level, neutrinos and quarks have interactions described by the standard model. Going
up a level, individual nucleons require form factors. Another level up, a nuclear model is
needed to describe the behavior of nucleons in the nucleus. Because of this, the cross section
is determined by the combination of form factors and a nuclear model, as described below.

The form factors describe the behavior of individual nucleons, with the axial form factor
having the largest contribution to the cross section. The MiniBooNE Collaboration used
an axial dipole form factor to analyze CCQE data in [2]. Future analysis plans to use the
“z-expansion” technique for this axial form factor employed in [3]:

FA(q2) =
∞∑
k=0

akz(q2)k, (3)

where q2 is the transfer of four-momentum during scattering.
The nuclear model describes how nucleons interact within the nucleus. Current theory

uses the RFG nuclear model, where we will instead use the CFG nuclear model. Motiva-
tion for the change in nuclear models is that experiments show that tensor force induced
short-range correlations between proton-neutron pairs shift nucleons to high-momentum in
symmetric nuclear matter (Ref. [4]). The RFG nuclear model treats nucleon momentum
distribution as a step function that drops to zero at the fermi momentum boundary, and
does not take these shifts into account, see Figure 1.

Figure 1: A plot of the RFG nuclear model momentum distribution; the drop takes place at
the fermi momentum boundary.

The CFG nuclear model, however, does account for these shifts. Instead of dropping
to zero at the fermi momentum like the RFG model’s distribution does, the CFG model’s
distribution has a “high-momentum tail” beyond the fermi momentum boundary which falls

off as
1

|p|4
, where p is momentum, see Figure 2.
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Figure 2: A plot of the CFG nuclear model momentum distribution; note the high-
momentum tail beyond the fermi momentum boundary of the RFG.

A current Mathematica code is formatted to utilize the z-expansion from [3] and assumes
the RFG nuclear model to analyze CCQE scattering data from MiniBoone. In order to
analyze data assuming the CFG nuclear model, analytic expressions related to the CFG
model’s momentum distribution calculated in [7] must be implemented into the code.

III The Correlated Fermi Gas Model

As seen in Figure 3 below, the CFG momentum distribution contains 4 regions. The case
where λ = 1 would eliminate regions II and III, thus simplifying to the RFG model. In this
sense, calculations involving the RFG model need only incorporate the regional transition
I→IV. Calculations involving the CFG model must incorporate four regional transitions:
I→III, II→III, I→IV, and II→IV.
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Figure 3: The CFG momentum distribution with respect to the fermi momentum, pF , and
the cutoff for the high-momentum tail, λp0

F , where λ > 1.
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The nuclear model’s contribution to the CCQE scattering cross section is determined by
a set of equations (ai) which are integrated over nucleon energy (EP ). Each region has seven
of these corresponding ai

′s that may be defined in terms of a general-form integral. Because
the RFG model only encompasses the I→IV transition, there are just seven ai

′s associated
with it. The CFG however encompasses four transitions, and therefore has 28 ai

′s associated
with it. The general-form integral for these equations, derived in [7], is as follows:

b̃(j, k) =
mTV

2π|q|

(
c0pF
A0

)k ∫
EpdEp

(Ep − εb)(E2
p −m2

N)2k

(
Ep

mN

)j
, (4)

=
mTV

2π|q|mj
N

(
c0pF
A0

)k ∫ E1+j
p dEp

(Ep − εb)(E2
p −m2

N)2k
, (5)

wheremT is the mass of the target nucleon, mN is the average mass of the proton and neutron,
V and A0 are normalization constants, c0 is a constant related to the phenomenological
height factor, εb is the nucleon binding energy, |q| is the three-momentum transfer, and
(j, k) = 0, 1, 2. The ai

′s for the I→IV transition defined in terms of b̃(j, k) are as follows:

a1(I→ IV) = b̃(0, 0) , (6)

a2(I→ IV) = b̃(2, 0)− b̃(0, 0) , (7)

a3(I→ IV) = c2b̃(2, 0) + 2cdb̃(1, 0) + d2b̃(0, 0) , (8)

a4(I→ IV) = b̃(2, 0)− 2
εb
mN

b̃(1, 0) +
ε2b
m2
N

b̃(0, 0) , (9)

a5(I→ IV) = − cb̃(2, 0) +

(
εb
mN

c− d
)
b̃(1, 0) +

εb
mN

db̃(0, 0) , (10)

a6(I→ IV) = − cb̃(1, 0)− db̃(0, 0) , (11)

a7(I→ IV) = b̃(1, 0)− εb
mN

b̃(0, 0) , (12)

where ωeff is the difference between the energy of the incident neutrino, the resulting lepton,
and εb, and c = −ωeff/|q| and d = −(ω2

eff − |q|2)/(2|q|mN) have been used to simplify the
expressions. If we denote the linear combination of b̃′s as fi(b̃(j, k)) such that ai(I→ IV) =
fi(b̃(j, k = 0)), then the form of the ai

′s for all transitions may be written as

ai(I→ IV) = fi(b̃(j, k = 0)) , (13)

ai(II→ IV) = fi(b̃(j, k = 1)) , (14)

ai(I→ III) = ai(I→ IV)− ai(II→ IV) ,

= fi(b̃(j, k = 0))− fi(b̃(j, k = 1)) , (15)

ai(II→ III) = ai(II→ IV)− fi(b̃(j, k = 2)) ,

= fi(b̃(j, k = 1))− fi(b̃(j, k = 2)) . (16)
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IV Limits of Integration

Kinematics from a CCQE scattering event, such as the scattering angle and energy of the
resulting characteristic lepton, may be used to determine the range of integration for these
equations. Physical restraints on the kinematic variables and the boundary conditions for
each of the four regions (see Figure 3) are used to determine the upper (Ehi) and lower
limits (Elo) of integration for each transition (derived in [7]). From Eq.’s (17) - (23), we
see that the limits of integration for all four transitions depend on the numerical relations

between 5 parameters: EF , EF − ωeff , Eλ
F , Eλ

F − ωeff , and ∆ ≡ mN
cd+

√
1− c2 + d2

1− c2
. EF

is the fermi energy associated with the fermi momentum, EF =
√
m2
N + p2

F . Eλ
F is the

cutoff energy associated with the high-momentum tail cutoff in the CFG nuclear model’s
momentum distribution, Eλ

F =
√

(λpF )2 +m2
N . The ∆ term is derived in the appendix of

Ref. [1] as a result of the delta function and the condition that −1 ≤ cos θ ≤ 1 for a physical
scattering angle θ. Note that if the kinematics for a specific instance of CCQE scattering
yield values for the 5 parameters such that Ehi ≤ Elo for one of the regional transitions, then
that transition will not contribute to the cross section. The limits are determined as follows:

I → IV: For the I → IV transition the initial energy of the nucleon must be less than or
equal to the Fermi energy, otherwise it wouldn’t be within region I. The Fermi energy must
be less than Eλ

F which must be less than or equal to the final energy of the nucleon (Ep+q).

I→ IV : Ep ≤ EF < Eλ
F ≤ Ep+q = Ep + ωeff , (17)

⇒ min(EF , E
λ
F − ωeff) ≤ Ep ,

Elo = max(Eλ
F − ωeff ,∆) ,

Ehi = EF .

(18)

II → IV: For the II→ IV transition the initial energy of the nucleon must be greater than
the Fermi energy, but still less than Eλ

F , otherwise it wouldn’t be within region 2. The final
energy of the nucleon must be greater than Eλ

F to ensure that the nucleon gained enough
energy to enter region IV.

II→ IV : EF ≤ Ep ≤ Eλ
F ≤ Ep+q = Ep + ωeff , (19)

⇒ max(EF , E
λ
F − ωeff) ≤ Ep ,

Elo = max(EF , E
λ
F − ωeff ,∆) ,

Ehi = Eλ
F .

(20)
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I → III: For the I → III transition the initial energy of the nucleon must be less than
or equal to the Fermi energy, otherwise it wouldn’t be within region I. The final energy of
the nucleon must then be greater than the Fermi energy, but less than Eλ

F . These boundary
conditions establish that the nucleon ends up in region III.

I→ III : Ep ≤ EF ≤ Ep+q = Ep + ωeff ≤ Eλ
F , (21)

⇒ EF − ωeff ≤ Ep ≤ Eλ
F − ωeff ,

Elo = max(EF − ωeff ,∆) ,

Ehi = min(Eλ
F − ωeff , EF ) .

(22)

II → III: For the II → III transition the initial energy of the nucleon must be greater
than the Fermi energy, but still less than the final energy of the nucleon, which is less than
Eλ
F . This keeps the nucleon within the bounds of regions II and III, but limits the initial

energy to be less than the final energy. Note that when ωeff is negative, contributions will
result only from the II → III transition, if at all. Looking at Figure 3, this transition can be
visualized as an arrow that begins in the tail end of region II and points backwards and up
into region III.

II→ III : EF ≤ Ep < Ep+q = Ep + ωeff ≤ Eλ
F , (23)

⇒ EF ≤ Ep ≤ Eλ
F − ωeff ,

Elo = max(EF ,∆) ,

Ehi = min(Eλ
F − ωeff , E

λ
F ) .

V Ordering of Parameters

Because the numerical relations above depend on 5 parameters, there are 5! = 120 permu-
tations possible. However, these parameters are subject to physical and logical constraints
which greatly reduce the number of permutations that may actually be obtained. Because
EF and Eλ

F are functions of constants (pF and mN), λ > 1 implies that EF < Eλ
F must always

hold. Similarly, it must always hold that EF − ωeff < Eλ
F − ωeff . These two requirements

alone reduce the number of valid permutations to 30. For consistency, it must simultaneously
hold that EF < EF − ωeff and Eλ

F < Eλ
F − ωeff in the case that ωeff is negative, and that

EF > EF − ωeff and Eλ
F > Eλ

F − ωeff in the case of a positive ωeff . This requirement further
reduces the number of valid transitions to 20.

Noting also from Eq.’s (17) - (23), ∆ is present in the expression for the lower limit of
integration in each of the four transitions. Since the expressions for Elo take the maximum
of an argument, any instance where ∆ is greater than the other four parameters will yield
Ehi ≤ Elo for all transitions. As mentioned in the previous section, any transition for which
Ehi ≤ Elo will have no contribution; therefore we also apply the constraint that the maximum
of the five parameters may not be ∆. In a similar fashion, the expressions for the limits of
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integration are such that any case in which EF < Eλ
F < ∆ will have no contribution from any

transition. These two requirements remove 7 more permutations, bringing the total number
of valid permutations to 13.

Table 1: Constants used in calculations for limits of integration. See [4] for pF and λ, see [5]
for εb, and see [6] for mµ and mn.

pF (GeV) λ εb(GeV) mµ(GeV/c2) mN(GeV/c2) EF (GeV) Eλ
F (GeV)

0.250 2.75± 0.25 0.025 0.1057 0.9389 0.972 1.164

The data gathered from MiniBooNe dealt with incident neutrino energies ranging from
50 MeV to 3 GeV and resulting lepton energies ranging from 0.2 GeV to 2 GeV (Ref [2]).
When dealing with these ranges, the ∆ term appears to have an absolute minimum value
of approximately 0.94 GeV. The case ∆ < EF − ωeff < Eλ

F − ωeff < EF < Eλ
F is prevented

from ever occurring due to this minimum, because the fixed values of EF and Eλ
F along with

the overall ordering of the parameters would require ∆ to take values significantly less than
0.94 GeV (see Table 1 above). The case ∆ < EF < Eλ

F < EF − ωeff < Eλ
F − ωeff is also

unobtainable when dealing with MiniBoone kinematics. The linear dependence between the
parameters in this permutation places a local minimum value on ∆ of approximately 1.12
GeV; this contradicts ∆ < EF because EF = 0.972 GeV < 1.12 GeV. These two final
restrictions leave just 11 valid permutations of the original 120. Listed exhaustively, they
are:

1 : ∆ < EF − ωeff < EF < Eλ
F − ωeff < Eλ

F , (24)

2 : EF − ωeff < ∆ < EF < Eλ
F − ωeff < Eλ

F , (25)

3 : EF − ωeff < EF < ∆ < Eλ
F − ωeff < Eλ

F , (26)

4 : EF − ωeff < EF < Eλ
F − ωeff < ∆ < Eλ

F , (27)

5 : EF − ωeff < ∆ < Eλ
F − ωeff < EF < Eλ

F , (28)

6 : EF − ωeff < Eλ
F − ωeff < ∆ < EF < Eλ

F , (29)

7 : EF − ωeff < Eλ
F − ωeff < EF < ∆ < Eλ

F , (30)

8 : ∆ < EF < EF − ωeff < Eλ
F < Eλ

F − ωeff , (31)

9 : EF < ∆ < EF − ωeff < Eλ
F < Eλ

F − ωeff , (32)

10 : EF < EF − ωeff < ∆ < Eλ
F < Eλ

F − ωeff , (33)

11 : EF < ∆ < Eλ
F < EF − ωeff < Eλ

F − ωeff . (34)

VI Implementation to Code

In order to analyze scattering data using the CFG nuclear model, code must be written
that determines which of the four regional transitions yield valid contributions, calculates
the corresponding upper and lower limits of integration, and evaluates the ai

′s. This task
is simplified when using the RFG nuclear model, which effectively only takes the I→IV
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transition into consideration. The upper limit of integration is fixed for this transition,
and the lower limit is the maximum of two parameters; either the contribution will come
entirely from this transition, or there will be no contribution at all. When using the CFG,
contributions may come from any combination of the four transitions, each with different
limits of integration and integrals to determine and calculate, where each limit has its own
expression.

To illustrate how the four transitions may (or may not) contribute, consider case 1 : ∆ <
EF − ωeff < EF < Eλ

F − ωeff < Eλ
F ; if we “plug in” this ordering of the parameters to the

expressions for the limits of integration (Eq.’s (17) - (23)), we obtain the results in Table 2.

Table 2: Values for the limits of integration for the ordering of the 5 parameters in case 1.

Transition I→IV II→IV I→III II→III

Elo Eλ
F − ωeff Eλ

F − ωeff EF − ωeff EF

Ehi EF Eλ
F EF Eλ

F − ωeff

From Table 1, the difference between EF and Eλ
F is approximately 0.19 GeV. For EF <

Eλ
F − ωeff < Eλ

F to hold, it must be that −0.19 GeV < ωeff < 0. Thus for case 1 we see that
there are valid contributions from all transitions except I→IV, where Elo > Ehi. Therefore,
if data for a specific scattering event is used to calculate the 5 parameters and they are in
the configuration of case 1, then we know exactly which transitions will yield contributions
and exactly what the limits of integration for those transitions will be.

The same process may be repeated for the remaining 10 cases, such that for all 11 cases
we will know which transitions matter and what their limits of integration will be. These
transitions and limits may be hard-coded for each case, so that the only task required by the
code when analyzing data is to evaluate and sort the 5 parameters based on the kinematics
of the scattering event being analyzed. The order of the 5 parameters will determine the case
which is present, and then values for the limits of integration may be passed in so that the
ai
′s may be calculated. In this way, the CFG model may be integrated into the Mathematica

code and assumed when analyzing CCQE data.
Currently, no analysis has been performed yet assuming the CFG model. In the future,

code implementing the CFG model will be finalized and optimized to execute in an efficient
manner, and then used to analyze the MiniBoone CCQE scattering data. The contents of
this paper as well as possible findings from future analysis will be presented at the Conference
Experience for Undergraduates at the October 2017 meeting of the APS Division of Nuclear
Physics. Future work may also include generalizing the implementation of the CFG model
so that it may be applied to other scattering experiments beyond MiniBoone.
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