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Abstract

Recent measurements of RK (B(B+ → K+µ+µ−)/B(B+ → K+e+e−)[1−6 GeV2])
shows substantial deviation from its standard model prediction. This deviation could
be due to new physics at a high-energy scale, that cause deviations in Wilson Coeffi-
cients of low-energy operators. This article seeks to constrain and analyze the Wilson
Coefficients that are present in the branching ratios of decays.
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1 Introduction

The Standard Model (SM) of particle physics works extremely well when calculating decay
rates of subatomic particle and explaining different types of physical phenomena that occur
at the subatomic level. Included in the SM are lists of rules that govern interactions and
different conserved quantities that have aligned well with the observed experimental results.
The SM spectrum includes 4 types of particles: gauge bosons, quarks, leptons, and the Higgs
boson. The gauge bosons are particles with spin 1 that mediate the different forces. For
instance, the W and Z bosons mediate the weak force. In Table 1 we summarize the physical
properties of this type of particles.

Gauge Bosons
Boson Mass Charge Force
γ 0 MeV 0 Electromagnetic

Z 91.1876± 0.00214 GeV 0 Weak

W±1 80.385± 0.01596 GeV ±1 Weak

Gluon 0 MeV 0 Strong

Table 1: Table of Gauge Bosons in the SM [2]

In addition to the gauge bosons, the SM contains other particles known as fermions.
Fermions have half-integer spin and are comprised of quarks and leptons. There are 3 types
of leptons (electron, muon and tau), each with its corresponding neutrino. Each fermion (f)
has an antiparticle (f̄), which has the same mass but opposite charge. These leptons can be
seen in Table 2.

Leptons
Type Mass Charge
e 0.5109989461(31) MeV −1

µ 105.6583745(24) MeV −1

τ 1776.86± 0.12 MeV −1

Table 2: Table of Leptons in the SM [2]

The other types of fermions are quarks. Quarks differ from leptons because quarks
participate in the strong force, while leptons do not. Quarks also have either a 2

3
or −1

3

charge and can be seen below in Table 3. Finally, there is the recently discovered Higgs
boson, a spinless scalar particle responsible for generating gauge boson and fermion masses
in the SM.

In spite of its remarkable success in explaining subatomic phenomena, recent observations
made by BaBar, Belle, and LHCb collaborations provide hints that there is new physics
beyond the SM. In this article, we will study decays of the B+ (b̄u) and Bs (b̄s) mesons.
We will focus on a few interesting channels that have received quite a bit of attention in the
literature.
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Quarks
Type Mass Charge
u 2.2+0.6

−0.4 MeV 2
3

d 4.7+0.5
−0.4 MeV −1

3

s 96+8
−4 MeV −1

3

c 1.28± 0.03 GeV 2
3

b 4.18+0.04
−0.03 GeV −1

3

t 173.1± 0.6 GeV 2
3

Table 3: Table of Quarks in the SM [2]

The RK and RD(∗) are two ratios of these B meson decays that show some puzzling
experimental results. The RK ratio is defined as B(B+ → K+µ+µ−)/B(B+ → K+e+e−)
The experimental value found by the LHCb Collaboration is [6]

Rexpt
K = 0.745+0.090

−0.074 (stat) ±0.036 (syst)

This differs from the SM prediction of Rexpt
K = 1 ± 0.01 by 2.6σ. [7] Another puzzle is the

RD(∗) ratio, defined as B(B̄ → D(∗)τ−ντ/B(B̄ → D(∗)l−νl) where (l = µ or e) We will focus
on analyzing the possible NP contributions to the Wilson Coefficients (WC) arising from
the effective Hamiltonian of the b → sµ+µ− transition. The complete Hamiltonian is as
follows: [5].

H = −αGf√
2π
VtbV

∗
ts

∑
a=9,10

(CaOa + C ′aO
′
a) (1)

This article will take the Hamiltonian and use the WC found in the branching ratio of the
Bs → µ+µ− decay to constrain the effects of NP parameters. The article begins by first
exploring and computing different observables of the π+ → l+νl decay. (Where l = µ or e)
This will provide us with a background in manipulating and understanding the theoretical
expressions for branching ratios and decays. It will also serve as a guide to the format for
the rest of the paper. In section 3 we will constrain the WC from the branching ratio of
the Bs → µ+µ− decay. We will use the Python package Flavio [4] to generate our data and
construct our plots. Flavio’s packages focus on flavor physics and allows the user to find
the contributions of different WC for varying observable. Finally in Section 4 plots of the
Branching ratio based upon the WC will be shown and fits to the data will be provided. We
conclude the article in Section 5.

2 The branching Ratio of a Charged Pion decay

In order to calculate the Branching ratio of a charged pion, we will use the Feynman Rules of
calculating amplitudes and the trace identities. We start by recognizing that the pion decay
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is a charged current interaction since pion is made of quarks, and the decay is mediated by
a massive W boson. A Feynman diagram for the decay may be seen in Figure 1:

Figure 1: Pion Decay (where ` is µ or e)

Where the up and anti-down quark and the lepton and corresponding lepton neutrino are
on the right.

The formula given to describe the branching ratio of this decay is given by [1]:

Γ =
S|p|

8π~m2
1c
|M|2 (2)

Where |p| is the outgoing momentum, S is the product of statistical factors (in our case it
will be equal to 1), m1 is the mass of the pion, and M is the Feynman amplitude. In our
notation, we will use ~ = c = 1 and so our expression becomes:

Γ =
S|p|
8πm2

1

|M|2 (3)

The next step is to determine M. In the charged current decay, we have a certain notation
for the vertices and propagators. The Feynman rules are:

1. For each vertex add a factor of −igw
2
√

2
(γν(1− γ5)) where gw =

√
4παw

2. For each propagator we add a factor of
−igµν−

qµqν

m2

q2−m2 where m is the mass of the boson.

In our case, mw � q so the expression simplifies to igµν
m2
w

From these rules and Figure 1 we are able to calculate the value of M

−iM =

[
u(3)

(
−igw
2
√

2
(γν(1− γ5)

)
v(2)

] [
igµν
m2
w

] [
−igw
2
√

2
F µ

]
(4)

Where F µ is the form factor of the coupling of the pion to the W boson. F µ has the form
of fπp

µ.

M =
g2
w

8m2
w

[
u(3)(γµ(1− γ5))v(2)

]
F µ (5)
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In order to square the amplitude we do the following:

|M2| =

(
g2
w

8m2
w

fπ

)2

Tr[(u(3)(γµ(1− γ5))v(2)pµ(v(2)(γν(1− γ5)u(3))]pν (6)

|M2| =

(
g2
w

8m2
w

fπ

)2

pµpν(8[pµ3p
ν
2 + pµ2p

ν
3 − (p3 · p2)gµν ] + 8iεµλνσp3λp2σ (7)

Summing over the spins gives us:

|M2| = 8

(
g2
w

8m2
w

fπ

)2 [
2(p1 · p2)(p1 · p3)− p2(p2 · p3)

]
(8)

Since p1 = p2 + p3, we can simplify the equation further. For simplicity and consistency we
will use the following notation: p1 = pπ, p2 = pl, p3 = pνl . The value of the 4-momentum
squared is:

p1 = (E, ~p1) (9)

(p1)2 = E2 − (~p1)2

(p1)2 = m2
1 (10)

Similarly: (pπ)2 = m2
π, (pl)

2 = m2
l , (pνl)

2 = (mνl)
2 = 0. Using this we can further simplify

Equation 8:

1

2
[(mπ)2 − (ml)

2] = (p2 · p3) (11)

1

2
[(mπ)2 − (ml)

2] = (p1 · p3) (12)

1

2
[(mπ)2 + (ml)

2] = (p1 · p2) (13)

Returning to Equation 8 we now have

|M2| = 8

(
g2
w

8m2
w

fπ

)2 [
1

2
(ml)

2((mπ)2 − (ml)
2)

]
(14)

With the Feynman amplitude, we are able to complete the expression for the branching ratio
of a pion. Returning to equation (3)

Γ =
S|p|
8πm2

1

|M|2 (15)

⇒ Γ =
S|p|
πm2

π

(
g2
w

8m2
w

fπ

)2 [
1

2
(ml)

2((mπ)2 − (ml)
2)

]
(16)

We then need to find the value of |p| which is simply the momentum of each outgoing
particle.

|p| =

√
m4

1 +m4
2 −m2

1m
2
2

2m1

(17)
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Because the neutrino is massless,

|p| =
(m2

π −m2
l )

2mπ

(18)

Combining with Equation 14:

Γ =
|p|

2πm2
1

(
g2
w

8m2
w

fπ

)2 [
(ml)

2((mπ)2 − (ml)
2)
]

(19)

⇒ Γ =
1

4π

(
g2
wfπ

8m2
w

)2(
1

m3
π

)
m2
l (m

2
π −m2

l )
2 (20)

Because g2w
8m2

w
= GF√

2
we are able to write:

Γ =
1

8π
(GFfπ)2

(
1

m3
π

)
m2
l (m

2
π −m2

l )
2 (21)

Expanding on this idea, we are able to graph Γl
Γπ

by:

Γ =
1

8π
(GFfπ)2m3

π

(
ml

mπ

)2
(

1−
(
ml

mπ

)2
)2

(22)

In order to find Γl
Γπ

we need to divide the above expression by 1
τπ

but normalize it with ~ = 1
using Natural Units so our final expression is:

Γl
Γπ

=
1

8π
(GFfπ)2m3

π

(τπ
~

)(ml

mπ

)2
(

1−
(
ml

mπ

)2
)2

(23)

The graph of the Equation 25 (with ml = me) is found in Figure 2. and the graph of
Equation 25 (with ml = mπ) is found in Figure 3. These figures show the value of the

branching ratio for certain values of ml as well as the plot of
Γml
Γπ

. Using the lifetime and
mass values from PDG [2] we may compute ratios.

Observables e µ π

τ (Lifetime) 6.6× 1028 yr 2.1969811(22)× 10−6 s 2.6033(5)× 10−8 s

Mass(MeV) 0.5109989461(31) 105.6583745(24) 139.57061(24)

To calculate the ratio of the π− → e− + νe and π− → µ− + νµ we do the following:

Γe
Γµ

=
m2
e(m

2
π −m2

e)
2

m2
µ(m2

π −m2
µ)2

(24)

Γe
Γµ

= 1.28334(73)× 10−4 (25)

This is an interesting observation because the value of Γe
Γµ

suggests that the probability of

π− → µ− + νµ is higher than π− → e− + νe. This is somewhat striking because the mass of
a muon is greater than the mass of an electron, indicating that the pion does not decay into
the lightest particle most frequently.
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Figure 2: Graph of Γme
Γπ

and the value of me
mπ

and the value of B(π− → e− + νe)

Figure 3: Graph of
Γmµ
Γπ

and the value of mµ
mπ

and the value of B(π− → µ− + νµ)
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3 The Branching Ratio of the Bs → µ+µ− decay

From [12] the SM branching ratio value is (3.66 ± 0.23) × 10−9. An expression for the
branching ratio for Bs → µ+µ− can be found in [3] including NP WC’s. The expression for
the branching ratio is seen below:

B(Bs → µ+µ−) =
G2
Fα

2
emm

5
Bs
f 2
Bs
τBs

64π3

√
1−

4m2
µ

m2
Bs

{(
1−

4m2
µ

m2
Bs

)
∣∣∣∣ζ CS − C ′Smb +ms

∣∣∣∣2 +

∣∣∣∣ζ CP − C ′Pmb +ms

+
2mµ

m2
Bs

[|VtbV ∗ts|C10 + ζ(CA − C
′

A)]

∣∣∣∣2}(26)

Where ζ ≡ (
g2NP
Λ2 )(

√
2

4GF
)( 4π
αem

)

The four-fermi operator diagram of the decay can be seen below: Since we seek to find

Figure 4: Diagram of Bs → µ+µ− from four-fermi operators

the constraints on the parameters CS, C
′
S, CP , C

′
P , CA, and C

′
A we set the equation equal to

the branching ratio given in [4]. We also use the values for C10, |VtbV ∗ts|, gNP , and Λ given
in [3]. Thus we are able to find the constraints on the parameters. In order to solve for one
parameter, we allow the other two to be equal to 0, this will simplify our calculations. The
experimental value for the branching ratio of Bs → µ+µ− decay is equal to 2.4+0.9

−0.7×10−9 [2].
We are able to find:

CS = ±1.6215i× 10−4

= ±4.63981× 10−5

CP = 6.3832× 10−5 or 4.1125× 10−4
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= −4.482× 10−6 or 4.7957× 10−4

CA = 2.0348× 10−3 or 1.31095× 10−2

= −1.48237× 10−4 or 1.5287× 10−2

Notes about the Wilson Coefficients:
The first CS coefficient is equal to ±1.6215i× 10−4 which indicates that the branching ratio
will receive a negative contribution from this coefficient when the branching ratio is below
the SM prediction. The CP has two values, the first value is equal to 2.375× 10−4 and the
second value is equal to 2.375× 10−4 as well (We are able to calculate a simple average due
to the small number of measurements). The last coefficient CA also has two values, the first
value is equal to 7.572×10−3 and the second value is equal to 7.569×10−3. Both CP and CA
have two possible values because in the theoretical expression for the branching ratio, we take
the absolute value of the WC added to another factor. After finding the Wilson Coefficients,
we use the Python package Flavio [4] to compute the NP values of B(Bs → µ+µ−):

CS = ±1.6215i× 10−4

Flavio Prediction: B = 3.610× 10−9

CS = ±4.63981× 10−4

Flavio Prediction: B = 3.610× 10−9

CP = 2.375× 10−4

Flavio Prediction: B = 3.555× 10−9

CA = 7.572× 10−3

Flavio Prediction: B = 3.542× 10−9

CA = 7.569× 10−3

Flavio Prediction: B = 3.542× 10−9

4 Plots of B(WC)

Figures 5, 6, 7, and 8 give an indication of how the variation of a Wilson Coefficient could
change the value of the branching ratio. In figure 5 the value of B(Bs → µ+µ−) approaches
0 but has a minimum at the SM prediction which is on the order of 10−9. The plot in Figure
6 also approaches 0 because the WC CA could allow B(Bs → µ+µ−) to become 0. Figures 7
and 8 both share similar properties. Each has a minimum slightly below the SM predicted
branching ratio for their respective channels. This is due to the contributions from certain
WC’s. CA and C9 allow for a lower branching ratio than the SM prediction, but CS and CP
have minimums at the SM prediction. All of the plots follow a parabolic shape due to the
branching ratio being dependent on the square of each WC.
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Figure 5: Graph of B(Bs → µ+µ−) as functions of the CP and CS Wilson Coefficients

Figure 6: Graph of B(Bs → µ+µ−) as functions of the CA Wilson Coefficient
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Figure 7: Graph of B(B → Kµ+µ−) as functions of the Wilson Coefficients

Figure 8: Graph of B(B → K∗µ+µ−) as functions of the Wilson Coefficients
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5 Conclusion

The work done with the Wilson Coefficients indicates the sensitivity of potential NP con-
tributions to B meson decay channels. These NP contributions are non-zero but are very
modest. The WC have values of 10−4 to 10−5. As seen in Section 4, changing the WC
by and order of magnitude will increase certain branching ratios by 3 orders of magnitude.
The NP contributions from certain WC could also lower the branching ration from the SM
prediction. However, these are preliminary measurements and a more rigorous approach for
this process will be taken at a later time.

The NP contributions also have large errors bars. The expectation is that future work will
be done using a chi squared minimization technique to help limit and constrain the WC. The
chi squared technique would use the observables that have been measured experimentally
from different experiments. In the future, we hope to provide a rigorous explanation that
shows the existence of NP.
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7 Appendix

It was necessary to practice with spinor notation and different mathematical techniques be-
fore starting this project. This appendix summarizes what I was able to do in that regard.

Notation:

1. S = uu

2. P = uγ5u

3. V µ = uγµu

4. Aµ = uγµγ5u

1. (u1γ
µu2)∗ = ?

Note: (γ0)† = γ0 and (γµ)† = γ0γµγ0
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(u1γ
µu2) is a 1×1 matrix. Therefore, its complex conjugate is the same as its Hermitian

conjugate, i.e. if we call V µ = (u1γ
µu2), then (V µ)∗ = (V µ)†. We can then express this

quantity as follows:

V µ = u1γ
µu2 (27)

⇒ (V µ)∗ = (V µ)†

= (u1γ
µu2)† ,

= ((u1)†γ0γµu2)† using (A . . . Z)† = Z† . . . A† ,

= (u†2)(γµ)†(γ0)†(u1)

= (u†2)γ0γµγ0γ0(u1)

= (u†2)γ0γµ(u1)

= u2γ
µ(u1) (28)

Therefore (u1γ
µu2)∗ = u2γ

µu1. To solve for |V µ|2 we simply use |V µ|2 = Tr[u1γ
µu2u2γ

νu1].

Note: Tr[γµγν ] = 4gµν , Tr[γµγνγλγσ] = 4(gµνgλσ − gµλgνσ + gµσgνλ), The trace over
the product of an odd number of gamma matrices is zero.

|V µ|2 = Tr[u1γ
µu2u2γ

νu1] (29)

= Tr[u1γ
µ(/p2

+m)γνu1]

= Tr[u1u1γ
µ(/p2

+m)γν ]

= Tr[(/p1
+m)γµ(/p2

+m)γν ]

= Tr[/p1
γµ/p2

γν ] +m[Tr(γµ/p1
γν) + Tr(γµγν/p2

)] +m2Tr[γµγν ]

= Tr[/p1
γµ/p2

γν ] +m2Tr[γµγν ]

= Tr[(p1)λγ
λγµ(p2)σγ

σγν ] + 4m2gµν

= (p1)λ(p2)σTr[γλγµγσγν ] + 4m2gµν

= (p1)λ(p2)σ4(gµνgλσ − gµλgνσ + gµσgνλ) + 4m2gµν

= 4[pµ1p
ν
2 − gµν(p1 · p2) + pµ2p

ν
1] + 4m2gµν (30)

2. (u1γ
µγ5u2)∗ is also a 1× 1 Matrix so the same reasoning applies as above in 1. Note:

(γ5)† = γ5 We define: Aµ as u1γ
µγ5u2 thus:

(Aµ)∗ = (Aµ)† (31)

= (u1γ
µγ5u2)†

= ((u1)†γ0γµγ5u2)†

= (u†2)(γ5)†(γµ)†(γ0)†(u1)

= (u†2)γ5γ0γµγ0γ0u1

= (u†2)γ5γ0γµ(1)u1

= −(u†2)γ0γ5γµu1

= −u2γ
5γµu1
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= u2γ
µγ5u1 (32)

Therefore (u1γ
µγ5u2)∗ = u2γ

µγ5u1

We also are able to calculate |Aµ|2

|Aµ|2 = Tr[(u1γ
µγ5u2)(u2γ

νγ5u1)] (33)

= Tr[u1γ
µγ5(/p2

+m)γνγ5u1]

= Tr[u1u1γ
µγ5(/p2

+m)γνγ5]

= Tr[(/p1
+m)γµγ5(/p2

+m)γνγ5]

= Tr[/p1
γµγ5

/p2
γνγ5 +m2(γµγ5γνγ5)]

= Tr[(p1)λγ
λγµγ5(p2)σγ

σγνγ5] +m2Tr[γµγ5γνγ5]

= (p1)λ(p2)σTr[γλγµγ5γσγνγ5]−m2Tr[γµγ5γ5γν ]

= (p1)λ(p2)σTr[γλγµγ5γ5γσγν ]−m2Tr[γµγν ]

= (p1)λ(p2)σTr[γλγµγσγν ]−m2(gµν)

= (p1)λ(p2)σ4(gµνgλσ − gµλgνσ + gµσgνλ)− 4m2gµν

= 4[pµ1p
ν
2 − gµν(p1 · p2) + pµ2p

ν
1]− 4m2gµν (34)

3. (u1u2)∗ = ? We let S = u1u2

(S)∗ = (S)† (35)

= (u1u2)† ,

= ((u1)†γ0u2)†

= (u2)†(γ0)†(u1)

= (u2)†γ0(u1)

= u2(u1) (36)

Therefore(u1u2)∗ = u2u1. In order to find |S|2 we simply do the following:

|S|2 = Tr[u1u2u2u1] (37)

= Tr[(/p1
+m)(/p2

+m)]

= Tr[/p1/p2
+m(/p1

+ /p2
) +m2]

= Tr[/p1/p2
] + Tr[m(/p1

+ /p2
)] + Tr[m2]

= Tr[/p1/p2
] +m(Tr[/p1

] + Tr[/p2
]) +m2Tr[1]

= Tr[/p1/p2
] + 4m2

= 4(p1 · p2) + 4m2 (38)

4. By the same reasoning as shown above it can be shown that (u1γ
5u2)∗ = u2γ

5u1

If we let P = u1γ
5u2 then:

(P )∗ = (P )† (39)
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= (u1γ
5u2)† ,

= ((u1)†γ0γ5u2)†

= (u2)†(γ5)†(γ0)†(u1)

= (u2)†(γ5)γ0(u1)

= −(u2)†γ0γ5(u1)

= −u2γ
5(u1) (40)

Therefore (u1γ
5u2)∗ = − u2γ

5u1

In order to square P we do the following:

|P |2 = Tr[u1γ
5u2(−u2γ

5u1)] (41)

= Tr[u1u1γ
5(−/p2

−m)γ5]

= Tr[(/p1
+m)γ5(−/p2

−m)γ5]

= Tr[((p1)µγ
µ +m)γ5((−p2)νγ

ν −m)γ5]

= Tr[((p1)µγ
µγ5 +mγ5)((−p2)νγ

νγ5 −mγ5)]

= Tr[(p1)µγ
µγ5(−p2)νγ

νγ5]− 4m2

= (p1)µ(−p2)νTr[γµγ5γνγ5]− 4m2

= (p1)µ(−p2)νTr[γµγ5(−γ5γν)]− 4m2

= (p1)µ(−p2)ν(−Tr[γµγν ])− 4m2

= (p1)µ(−p2)ν(−4gµν)− 4m2

= 4(p1)(p2)− 4m2 (42)
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