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1 Introduction 

 Covariance is a measure of how linearly two things change with each other.  Here we 

look at the covariance of the momentums of particles created by nuclear collisions.  This 

covariance is used to calculate the viscosity of the Quark Gluon Plasma created by these nuclear 

collisions.1  The covariance in ref. (1) uses transverse momentum and here we look at Cartesian 

momentum as a further source of insight.  In order to do this, we analyze Au on Au collisions at 

√𝑠 = 200𝐺𝑒𝑉 produced by the simulation engine AMPT and compare our results to data 

produced by STAR2 to ensure accuracy. 

1.1 Particle Momentum 

 Transverse momentum, particle momentum perpendicular to the beam direction, 𝑝𝑡, is the 

standard measurement.  This has given us much insight into the viscosity of QGP and has helped 

shape our understanding of this form of matter.  We decided to expand on this understanding by 

looking at momentum correlations with respect to Cartesian momentum coordinates.  This is 

significant because momentum in 𝑥 and 𝑦 are conserved when all particles are included while 

transverse momentum is not.  This is easily seen by the definition of 𝑝𝑡 where it is always 

positive. 

𝑝𝑡 = √𝑝𝑥
2 + 𝑝𝑦

2 (1) 

This difference in momentum definitions may lead to further understanding of QGP and its 

viscosity. 

1.2 Centrality 

 Number of Particles 

 In order to calculate momentum correlations, we must be able to separate the collision 

events according to centrality, 𝑏 a measure of how close the two nuclei are to a head on collision.  

The impact parameter, 𝑏, is the distance between the centers of the two gold nuclei.  In our 

calculation we bin collision events with respect to the number of particles, 𝑁𝑝𝑎𝑟𝑡, which is the 



number of nucleons from both nuclei that are involved in the collision.  A higher 𝑁𝑝𝑎𝑟𝑡 

corresponds to central collisions while low 𝑁𝑝𝑎𝑟𝑡 corresponds to peripheral collisions. 

 Rapidity 

 In this project, we use rapidity and pseudo-rapidity to represent z-momentum.  Pseudo-

rapidity, 𝜂, is a measure of the angle from the particle beam to the given particle’s momentum. 

𝜂 =
1

2
ln (

|𝑝| + 𝑝𝑧

|𝑝| − 𝑝𝑧
) (2) 

Relative pseudo-rapidity, Δ𝜂 = 𝜂1 − 𝜂2, is the difference between the rapidities of two particles 

and represents the amount of time two particles are communicating.  A small Δ𝜂 means the 

particles are close in momentum so they interact for the length of the collision, while large Δ𝜂 

means the particles only interact for a short time at the beginning of the collision.  This can be 

very helpful later when calculating momentum correlations, which is binned by STAR2 with 

respect to Δ𝜂.  This will give some comparison to experimental values and lead to more insight 

into QGP viscosity.   

 STAR only sees |𝜂| < 1 although many particles are outside of this range.2  This is one 

of the benefits of using simulated events, we can expand the acceptance parameter, 𝜂, and 

include all of the particles from the collision.  This is essential as the viscosity calculation 

depends on the inclusion of all particles. 

1.2 AMPT  

 For our calculations we took data produced by the AMPT(A Multi Phase Transport 

Model) simulation engine.  AMPT simulates collisions with a “Parton cascade”, like a gas of 

quarks and gluons.  Because ref. (1) assumes hydrodynamic evolution, we expect a difference 

between these different methods and measurements.  Due to the delicate nature of AMPT, we 

were able to only get 9000 collision events to run our analysis on.   

2 Measuring Correlations 

Figure 1: This is a visual 

representation of 𝜂 and its 

relation to the angle from the 

particle beam. When there is 

more 𝑝𝑧, 𝜂 is larger. 



2.1 Transverse Momentum 

 We started our research by calculating the momentum covariance, in order to compare to 

STAR measurement2 and ensure the accuracy of our calculation. 𝐶𝑝𝑡𝑝𝑡
 is a standard covariance 

relation 

C𝑝𝑡𝑝𝑡
=

1

〈N〉2
⟨ ∑ ptiptj

pairs

⟩ − 〈pt〉2 (3) 

where 〈𝑁〉 is the average number of particles per event.  The average transverse momentum, 

〈𝑝𝑡〉, is defined as 

〈𝑃𝑡〉 =
1

𝑁𝑒𝑣
∑ ∑ 𝑝𝑡𝑖

𝑁𝑘

𝑖=1

𝑁𝑒𝑣

𝑘=1

 
(4) 

〈𝑝𝑡〉 =
〈𝑃𝑡〉

〈𝑁〉
 

(5) 

 

In eq. (3), the first term is the sum of all the correlations between particles and the second term 

subtracts off all random correlations between particles.  If there are no momentum correlations 

then 𝐶 = 0.  

Figure 2: 𝐶𝑝𝑡𝑝𝑡
 is calculated using the kinematic cuts from STAR, 0.2𝐺𝑒𝑉 > 𝑝𝑡 < 2𝐺𝑒𝑉, |𝜂| < −1 , and only 

charged particles. 



In closer inspection, 𝐶𝑝𝑡𝑝𝑡
 resembles a trend of 

𝐴

𝑁𝑝𝑎𝑟𝑡
 or 

𝐵

〈𝑁〉
 as seen in fig. (2).  Plotting 

these fits shows they come surprisingly close to 𝐶𝑝𝑡𝑝𝑡
, although only 

𝐵

〈𝑁〉
 continues this trend as 

the rapidity range is increased. 

 To get the STAR points, we integrated the function below for each centrality class.  The point in 

the middle has been claimed as an experimental error, so in addition to the pure data there is also 

plotted two sets of points ignoring this middle point.  The first of these two makes little change to the 

values while the second set also ignores several points from the tails of the function which lowers the 

values very little. 

 

 

 

 

 

 

 

There are two reasons why the STAR data2 does not line up with our calculation.  AMPT 

might get the physics wrong and lead to this discrepancy.  STAR measures 𝐶𝑝𝑡𝑝𝑡
 differently than 

eq. (3), they measure C as in fig. (3) while we take the integral over Δ𝜂 to get the points in fig. 

(2).  This leads to the possibility that the first term of eq. (3) gives the wrong number when 

integrated, because taking the integral of a fraction is not the same as taking the integral of its 

numerator over the integral of its denominator. 

∫ (
𝑎

𝑏
) ≠

∫ 𝑎

∫ 𝑏
 (6) 

 This has all been calculated before and is interesting but only serves as a foundation of 

our understanding of 𝐶 using Cartesian momentum.  In order to do this we expand the rapidity 

cuts for the calculation until we include all particles.  This is something that STAR cannot do as 

pointed out in Section 1.2.  This is important because 𝐶𝑝𝑥𝑝𝑥
, as described in Section 2.2, should 

move to a limiting function as all particles are included as shown by ref. (1).  In fig. (4) 𝐶𝑝𝑡𝑝𝑡
 

changes significantly as the rapidity cuts go to infinity.  This will give us a better understanding 

of how 𝐶𝑝𝑥𝑝𝑥
 changes when the same cuts are made. 

 

 

 

Figure 3: STAR integration of C for 0-5% centrality. 



 

 

 

 

 

 

 

 

 

2.2 Cartesian Momentum 

 The Cartesian momentum covariance correlation function is identical to that for 

transverse other than the change of momentum. 

Cpxpx
=

1

〈N〉2
⟨ ∑ pxipxj

pairs

⟩ − 〈px〉2 (7) 

The terms in this equation are the same as eq. (3), but the second term acts differently in this case.  

Because 𝑝𝑥  is conserved, when you include all particles the average momentum should be zero whereas 

when you include all particles for the transverse covariance the average momentum does not go to zero.  

 

 

 

 

 

 

 

 

 

 Figure 5: 𝐶𝑝𝑥𝑝𝑥
 is calculated using the kinematic cuts from STAR, 0.2𝐺𝑒𝑉 > 𝑝𝑡 < 2𝐺𝑒𝑉, |𝜂| < −1 , 

and only charged particles. 

Figure 4: Different rapidity cuts of 𝐶𝑝𝑡𝑝𝑡
 where |𝜂| < 0.5 (black),  |𝜂| < 1 (red),  |𝜂| < 3 (blue), 

and  |𝜂| < 6 (green) are the cuts. 



 

 

 Theoretically, as the cuts on the events increase and all particles are included 𝐶𝑝𝑥𝑝𝑥
 will go 

toward a limiting function1 of 

𝐶𝑝𝑥𝑝𝑥
= −

〈𝑝𝑥
2〉

〈𝑁〉
 (8) 

This is illustrated in Figure 5; as the rapidity cuts are increased to include all particles the right side of eq. 

(9) gets smaller because of the increase in 〈𝑁〉.  At the same time, the second term in eq. (7) goes to 

zero leaving only the first term which is equal to the limit in eq. (9).1 

𝐶𝑝𝑥𝑝𝑥
→ −

〈𝑝𝑥
2〉

〈𝑁〉
 (9) 

This relation can be seen in fig. (6) as the rapidity cuts are increased to include all particles.  This gives 

more credibility to the claims made in ref. (1) concerning 𝐶𝑝𝑥𝑝𝑥
. 

 Now that we have established Cptpt
, Cpxpx

, and how they change when the kinematic cuts 

are expanded, we can see that there is a definite trend.  As the rapidity acceptance is increased, the 

magnitude of both covariance functions decreases as seen in fig. (4) and fig. (7).   This will be important 

when we look at the viscosity with respect to transverse and Cartesian momentums. 

A B 

C D 

Figure 6: 𝐶𝑝𝑥𝑝𝑥
 plotted against −

〈𝑝𝑥
2〉

〈𝑁〉
 with increasing rapidity cuts. (A) |𝜂| < 0.5  (B) |𝜂| < 1  (C) |𝜂| < 3  (D) 

|𝜂| < 6. 



 

Figure 7: Different rapidity cuts of 𝐶𝑝𝑥𝑝𝑥
 where |𝜂| < 0.5 (black),  |𝜂| < 1 (red),  |𝜂| < 3 (blue), and  |𝜂| < 6 (green) are the 

cuts. 

3 Conclusion 

 We have given Cpxpx
 more theoretical foundation by examining the effect of the expansion of 

particle inclusion from the STAR experiment window to all particles.  We can use this information to 

measure the viscosity and other transport coefficients of QGP.1  

4 Future 

 There is much left to do and many exciting paths to take in continuing this research.  The 

most important is switching to the UrQMD simulation engine where we have access to millions 

of events that have been pre-generated.  This will increase the accuracy and dependability of our 

calculations considerably.   

 Another path of exploration is calculating the differential momentum covariance that is 

given by STAR.  This will allow us to look at the possible inaccuracy of Equation 4 and give us 

more insight into the viscosity of QGP at different centralities. 

 An obvious extension is to look at 𝐶𝑝𝑦𝑝𝑦
 and 𝐶𝑝𝑥𝑝𝑦

.  From preliminary calculations, 

𝐶𝑝𝑦𝑝𝑦
 acts very much like 𝐶𝑝𝑥𝑝𝑥

, while the mixed momentum covariance is still uncharted and 

may lead to some interesting things. 

 This will lead into the calculation of the viscosity of QGP and result in a paper. 
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