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Figure 1: The Casimir Effect
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1 Introduction
The search for Dark Matter has been an on going endeavor for almost a

century. There have been a medley of experiments that attempt to identify
Dark Matter. In this paper we attempt to look at Dark Matter from a
different perceptive, one that relies on the Casimir Effect.

The Casimir Effect is an attraction between two conducting plates. This
was first shown by Hendrick Casimir’s in 1948. Casimir’s original calculation
is assumed to be a consequence of vacuum fluctuations. While, most agree
that the attraction is due to vacuum fluctuations, others have argued that
the Casimir Force is a result of van der waals force.

In recent events, we have allotted for a different explanation for the
Casimir force. With the meticulous study of hidden sector physics we realize
that light Dark Matter might play a role in the Casimir Effect. If one were
to recalculate Casimir’s original calculation, but with consideration to DM
particles then perhaps one would get a more accurate result that agrees
with the experimental side. We will consider a dark photon, a boson with
mass and spin 1 that mediates the dark electromagnetic field. We will first
re-derive Casimir’s original results and then consider the possibility of the
dark photon interacting with the photon and then calculate the Casimir
force based of that interaction.

2 Casimir Effect
To measure the Casimir Effect, we need to define the vacuum when it is in

ground state.Ground state can be defined as the lowest possible energy state.
One way to obtain a ground state is to start off with the electromagnetic
field. First we must quantize the electromagnetic field in a vacuum and then
impose ground state ket notation which results in the following:

We first write down Maxwell’s equations for the electromagnetic force
where charge and current are set at 0.

~∇ · ~E = 0

~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B =
1

c2
∂ ~E

∂t

The next step is to redefine these terms as vector and scalar potentials.

2



~E = −∂
~A

∂t

~B = ~∇× ~A

Rewriting the electric and magnetic fields in terms of rank-2 tensor one
gets the well known Lagrangian density

L = −1

4
FµνFµν +

1

c
jµAµ

Once you take the Euler-Lagrange of that Lagrangian density you get
the well know Hamiltonian

H =

∫
1

2
(E2 +B2)d3r

We then plug in E and B in terms of vector potentials and we are left
with

H =
1

2

∫
(−∂A

∂t

2

+ (∇×A)2d3r

Now that we have a classical formulation, we need to quantize it. In
order to do that, we must promote the field vectors into operators. After
doing that,we get the result below.

< 0|H|0 >=< 0|
∑
k,λ

(
ˆ

α†k,λ ˆαk,λ +
1

2
)|0 >

< E >=
∑
k,λ

1

2
h̄ω

Where k is the wave vector and λ is the polarization term.
Assume two conducting plates with a R3 box and each plate is placed

side by side, with length L parallel to the x and y axis. The plates are a
distance a apart.

To solve for ωn and Kn, we need to look at a one dimensional standing
waves and impose the boundary conditions ψ(a, t) = ψ(0, t) = 0 When we
have a wave equation that obeys the given boundary conditions we call them
Dirichlet boundary conditions.

We plug this into the KG equation

ψ(x, t) = e−iωntsin(knx)
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We get the results

ω = ck

where k = kπ
a

This can be fitted for three dimensions. The wave equation becomes

ψn(x, y, z, t) = e−iωnte−iKxX+iKyY sin(Knz)

and the wave vector becomes

K2 = K2
x +K2

y +K2
z

Where:

Kx =
nxπ

L
,Ky =

nxπ

L
,Kz =

nxπ

a

In order to measure the vacuum energy we need to integrate over the x
and y coordinates and sum over the z coordinate. The sum diverges so in
order to make it converge we introduce the regulator ω−s This is refereed
to as the modern zeta function. We then take lims→0 which results in a
physical, measurable force.

< E(a) >=
h̄

2(2π2)

∫ ∫
L2
∑ w

ws
dKxdKz

Expanding and rearranging the equation yields:

< E(a, s) >= 2L2
∫ ∫

h̄

2

1

2π2

∑√
Kx

2 +K2
y +K2

zdKxdKz

Here we make the conversion from Cartesian to polar coordinates, using
y2 = K2

x +K2
y . Y is the resulting Jacobian.

< E(a, s) >=
h̄

2π
L2
∫ ∑

y(y2 +
nz

2π

a2

2

)
1
2
−sdy

First we attack the integral with a simple u substitution.

u2 = y2 +
nz

2π2

a2∫ ∞
Kz

u2−sdu
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u3−s

3− s

∣∣∣∣∞
Kz

−(
nzπ

a
)
3−s

The result is a negative answer. Integration along the x and y axis shows
a physics attractive force.

After some factoring and rearranging we have:

< E(a, s) >= L2 lim
s→0
− h̄c1−sπ2−s

2a3−s(3− s)

∞∑
n=1

1

ns−3

After examining the sum we see that is has a convergent value:

∞∑
n=1

1

n−3
= ζ(−3)

< E(a, s) >= −L
2h̄cπ2

6a3
ζ(−3)

ζ(−3) =
1

120

< E(a, s) >

A
= − h̄cπ2

720a3

To find the force we simply take the ∂E
∂a which yields:

< E(a, s) >

A
= − h̄cπ2

240a4

As of now we have demonstrated that there is an attraction. The main
question is, what causes this attraction? The derivaton we have provided
assumes the Casimir Force as a result of vacuum fluctuations. As stated pre-
viously, there are different opinions among the community. We will explore
more of the varying opinions next.
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3 Casimir Effect and the Van der Waals Force
In Casimir’s original calculations,due to the boundary condition, we as-

sume perfectly conducting plates and this is problematic. But in nature we
do not see perfectly conducting plates. So, since there isn’t such a thing as
perfectly conducting we must somehow incorporates α into our calculations.
Each conductor has a plasma frequency and a skin depth. Both of these
properties depend on α, the fine structure constant. From this we can can
say that alpha plays a role in the calculations, but no reference is made by
Casimir.

A calculation that is dependent on α must consider the strength of the
electromagnetic field and find out when exactly α vanishes. Others have
made this consideration by allowing the Casimir Effect to be a result of
interaction between atoms. One particular example we can follow is that of
Jaffe’s. If we look at Jaffe’s method, we can learn how this is possible. He
looks at the Casimir Effect as a scalar, in order to simplify it. One could
follow the method Jaffe constructed by looking at the following interaction
Lagrangian.

L =
1

2
gσ(x)φ2(x)

The boundary is considered as g →∞. He calculates the effective energy
as the sum of all one-loop Feynman diagram. The calculation shows as
g →∞ the dependence on the material no longer plays a role and the result
in the same as Casimir.

4 Dark Photon-Photon Mixing
The Lagrangian for a non interacting electromagnetic field is

L = −1

4
Fµν

2

We can expand this Lagrangian to include the dark photon and kinetic
mixing.

L = −1

4
Fµν

2 − 1

4
Bµν

2 − 1

2
χFµνBµν

Where χ is the coupling constant and

Fµν = ∂µAν − ∂νAµ

is the electromagnetic field strength tensor and

Bµν = ∂µAν − ∂νAµ
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is the dark electromagnetic field strength tensor.

1

2
χFµνBµν

is the kinetic mixing term.
This Lagrangian provides us with the equation of motion for the field.

If we go on to diagonalize it we end up with no mixing terms and thus we
have the equation for the fields (physical eigenstates). After that, one must
consider the interactions between fermions and the dark photon and this will
give a new charge shift, i.e. a modified alpha. Once that is done we apply
it to the Euler-Lagrange equation and we can get the Hamiltonian, i.e. the
total energy of the field. We then induced ground state with < 0|and|0 >
and then go on to make the Casimir force calculation.

5 Summary
In conclusion, we have shown that there is definitely a Casimir force.

An attraction between two plates in a vacuum that are less than a micron
apart. Although the force is clear, the reason behind it is not. We have
discussed the two prevailing opinions and their reasoning. Our main goal
aside from discussing the reason for the force is to recalculate the Casimir
effect, considering the interaction between photons and dark photons. In
order to do that, we constructed a Lagrangian that can give us the energy
of the field as well as the alpha between the dark photon and the photon.
Similar to Jaffe, we can use an approximation that incorporates α, that is
defined by the para-photon, and record a finite value for the Casimir Force.
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