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Abstract

A missing piece of our understanding of how the Universe came to be is the question of why it

contains more matter than anti-matter. Current model of formation of the Universe assumes that

right after the Big Bang, the Universe contained equal amounts of matter and anti-matter. The

fate of antimatter in the Universe’s evolution is currently not established. A possible explanation of

current-day matter domination lies in the process called baryogenesis. There are three conditions

for generating excess matter in baryogenesis: baryon number violation, CP violation, and the

evolution of the Universe out of thermodynamic equilibrium. An experimental manifestation of

baryon number violating processes is neutron-anti-neutron oscillations, which we consider in this

paper. We will go through the derivation of the probability of a neutron turning into an anti-

neutron in free space. Then we will calculate the annihilation rate of an anti-neutron and neutron

in a nucleus. The techniques developed in the project could be eventually applied to studies of

neutron-anti-neutron oscillations in neutron stars.
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INTRODUCTION

Current models of physics show that an event, such as the Big Bang, should have created

equal parts matter and anti-matter in the universe. It appears that in today’s world all

antimatter has disappeared. But could this anti-matter be somewhere else in the universe?

The answer is probably not. If there were large pockets of anti-matter in the universe we

would be able to detect the photons released at the border of these anti-matter pockets due

to annihilation. For matter to have become the dominant substance in our universe, we

have to either have some sort of reactions, which makes more matter than anti-matter, and

some sort of process in which matter and anti-matter spontaneously turn into each other.

In 1967, Soviet Physicist Andrei Sakharov proposed three conditions for this interaction,

also known as baryogensis: baryon number violation, Charge Parity or CP violation, and

the interaction must be outside of thermal equilibrium.[1]

Baryon number violation means that baryon number is not conserved in a reaction.

Baryon Number is a number which is assigned to each baryon, a composite particle made up

of 3 quarks, such as protons or neutrons. For matter baryons, such as protons and neutrons,

this number is 1, while for anti-matter baryons, such as anti-neutrons and anti-protons this

number is -1. When the Big Bang happened, the total baryon number of the universe

was 0. The Standard Model of particle physics included a very complicated mechanism for

baryon number violation. It is quite possible that models beyond the Standard Model have

a simpler method for baryon number violation, such as presence of baryon-number violating

interactions, which could be tested experimentally

CP denotes combined action of charge conjugation and parity symmetry. Charge conju-

gation transforms a particle into an anti-particle, for example a neutron to an anti-neutron.

Parity means that after that particle is transformed it will become it’s corresponding anti-

particle. Violations of C or CP symmetries imply that interactions among particles differ

from the interactions among anti-particles.

The third condition, the out-of-thermal equilibrium evolution of the Universe, assures

that the reactions that created excess of baryons over anti-baryons are not reversed. This

can happen according to the principle of detailed balance as in equilibrium each process

must be equilibrated by its reverse process. While all of these conditions are important,

this project is attempting to explain the first condition, baryon number violation. To do
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this, we can either look at protons or neutrons, since they both have a baryon number of 1.

Since protons carry electrical charge, transformation of protons into anti-protons leads to

non-conservation of electrical charge, which is forbidden. Neutrons are electrically neutral,

so we only have to worry about baryon number violation. There is some speculation that we

can recreate these neutron anti-neutron transitions by looking at neutrons within a particle

accelerator such as the LHC. These particles are hard to detect, simply because even in

the right conditions, baryogenesis is rare. Another strategy for looking at this is looking at

system with many neutrons such as a neutron star. Neutrons stars are stars made mostly of

neutrons with masses that are at least 1.4 times larger than the mass of the sun. They are

held together by neutron degeneracy pressure The goal of this project is to eventually derive

formulas for the densities of neutrons and anti-neutrons in neutron stars so that we can

form a theoretical ground work to investigate baryon number violation. To work up to that

goal, this paper will start out by looking at the probability of neutrons and anti-neutron

oscillations in free space. This will create a simple framework for us to look at neutron

anti-neutron oscillation in more complex cases. Then we can find the annihilation factor for

neutron anti-neutron oscillations. This will allow us to check our probability calculations

because they should add up to the annihilation factor. Then we will look at the probability

of neutron anti-neutron oscillations in matter using the framework we set up in the first

calculation. Once we get that probability we can apply the potential of a neutron star, and

calculate those densities.

NETURON ANTI-NEUTRON OSCILLATIONS IN FREE SPACE

In this section, we will derive the formula for a neutron turning into an anti-neutron. We

will begin by looking at the hamiltonian matrix. From there we will calculate the eigenvalues

of the matrix which represent the energy states of the neutron and the anti-neutron in free

space. From here we can write a basis equation for a neutron in terms of the neutron

anti-neutron basis. Then we can calculate the probability that a neutron, will turn into an

anti-neutron. We will follow the derivation in the paper ”Neutron-Antineutron Oscillations:

Theoretical Status and Experimental Prospects” [2] and then adding on to their calculation.

First we need an Hamiltonian Matrix. We’ll need a transition matrix elements which are

〈n|Heff |n̄〉 = 〈n̄|Heff |n〉 = δm. (1)
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Where Heff is some effective hamiltonian for the neutron and the anti-neutron. Calculating

the diagonal matrix elements we get

〈n|Heff |n〉 = M11, 〈n̄|Heff |n̄〉 = M22. (2)

M11 and M22 both have an imaginary competent which comes from the effective hamiltonian.

Mjj =
−iλ

2
, j = 1, 2. (3)

The imaginary part is there to represent the decay of the neutron in free space. Within free

space neutrons are unstable and will decay after some time. The reason neutrons decay is

because of its quarks. A neutron has three quarks; two down quarks, and an up quark .

A proton has two up quarks and one down quark. The down quark has a slightly larger

mass than an up quark. Subatomic particles want to be at the smallest mass possible, so a

neutron is likely to decay in a proton via the weak interaction, by changing one of its down

quarks into an up quark giving it a smaller mass. It is both unnecessary, and a hassle to

keep track of the imaginary part in most of these calculations. We will revisit this when

we calculate the probability of a neutron turning into an anti-neutron. Since we have our

matrix elements, we can now put together our matrix:

M =

M11 δm

δm M22

 . (4)

Diagonalizing this matrix gives us the eigenstates |n1〉

|n2〉

 =

 cos θ sin θ

− sin θ cos θ

 |n〉
|n̄〉

 (5)

where

tan 2θ =
2δm

∆M
. (6)

The energy eigenvalues are

E1,2 =
1

2
[M11 +M22 ±

√
∆M2 + 4(δm)2]. (7)

where

∆M = M11 −M22.
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Using this information we can solve for |n1〉 and |n2〉. Then we solve for |n〉 and |n̄〉 in terms

of |n1〉 and |n2〉 giving us

|n〉 = cos θ |n1〉 − sin θ |n2〉 (8)

and

|n̄〉 = sin θ |n1〉+ cos θ |n2〉 . (9)

We can figure out the time dependance of the |n〉 equation by solving the time dependent

Schrodinger equation giving us

|n(t)〉 = cos θe
−iE1t

2 |n1〉 − sin θe
−iE2t

2 |n2〉 (10)

We’re only focusing on the |n(t)〉 because our particle will be starting as a neutron. To

solve for the probability, we have to square the modulus of the function representing the

anti-neutron, times the function representing the time dependence of the neutron. What is

inside the modulus is called the probability amplitude and looks like 〈n̄|n(t)〉. We solved for

ketn(t) up above, so we can calculate that probability.

| 〈n̄|n(t)〉 |2 = | − sin θ cos θe
−iE1t

2 + cos θ sin θe
−iE2t

2 |2 (11)

By separating the exponents and using some trigonometric identities we get the answer they

get in the paper.

| 〈n̄|n(t)〉 |2 = sin2 2θ sin2 ∆Et

2
e−λt = Pn̄ (12)

with e−λt being the decay rate of a neutron in free space.

Now we can do our work which was to check the calculation done in the paper. For the

probability of a neutron staying a neutron, we get,

| 〈n|n(t)〉 |2 = (1− sin2 2θ sin2 ∆Et

2
)e−λt = Pn (13)

When can add our probability to the probability they get in the paper giving us

Pn + Pn̄ = e−λt. (14)

This is what we expected because even though it seems like the probability of our particle

turning into a anti-neutron or staying a neutron should be one. As stated earlier, neutrons

in free space decay. The solution we got is the decay rate. We can also see why neutron-anti-

neutron transitions are called oscillations The cosines and sines in the probability equations

show that neutrons oscillate into anti-neutrons. Therefore we can refer to neutron anti-

neutron transitions as neutron anti-neutron oscillations.
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NEUTRON ANTI-NEUTRON OSCILLATIONS WITHIN A NUCLEUS

This process is similar in matter, but the main difference is that neutrons and anti-

neutrons now have different potentials. This is because within a nucleus, the masses of the

neutrons change due to binding energy as well as interaction with other parts of the nucleus.

This makes it more complicated because we have to deal with various imaginary parts that

canceled out before. Again we will be following a calculation from the paper used above

[2]. The imaginary parts of the potential are there because when a neutron turns into an

anti-neutron, it will quickly annihilate another neutron in the nucleus. We will be using

a similar matrix to M in the last section, but instead of both hamiltonians for both the

neutron and the anti neutron having the same imaginary part, only the anti-neutron has an

imaginary part. In a nucleus, the diagonal matrix elements are

〈n|Heff |n〉 = mn,eff = mn + Vnr (15)

and

〈n̄|Heff |n̄〉 = mn,eff = mn + Vn̄r − iVn̄I (16)

where r and I stand for imaginary and real. These potentials come from looking at the

Schrodinger equation in circular coordinates. The transitional matrix elements are the same

meaning

〈n|Hn,eff |n̄〉 = 〈n̄|Heff |n〉 = δm. (17)

This ends up creating the matrix,

Ma =

mn,eff δm

δm mn̄,eff

 . (18)

The energy eigenvalues of this matrix are

E1,2 =
1

2
mn,eff +mn̄,eff ±

√
(mn,eff −mn̄,eff )2 + 4(δm)2. (19)

Using the rotational matrix from the last section, we can find the relationship between the

various values in Ma which ends up being

tan 2θ =
2(δm)

mn,eff −mn̄,eff

. (20)
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Next we need find the annihilation rate of a neutron turning into an anti-neturon. This is

represented by Γ. We can get this from the eigenvalues calculated earlier.

E1 = mn,eff +
i

2
Γ (21)

To get our E1 to look like that, we used some algebraic manipulation and taylor series,

giving us,

E1 = mn,eff +
(δm)2(mn,eff −mn̄,eff )

(mn,eff −mn̄,eff)2
(22)

We can plug in for mn,eff and mn̄,eff

E1 = mn + Vn − i
(δm)2

Vn − Vn̄r + iVn̄I
(23)

E1 = mn + Vn − i
(δm)2 + Vn̄i

Vn − Vn̄r + iVn̄I
+

Vn − Vn̄
(Vn − Vn̄r)2 + (Vn̄I)2

(24)

Because Vn, Vn̄r, andVn̄I are all on the same order of magnitude so Vn − Vn̄r should be

extraordinarily small or close to zero this gives us

E1 = mn + Vn − i
(δm)2 + Vn̄i

Vn − Vn̄r + iVn̄I
(25)

From this can plug this in to the earlier equation to get an annihilation rate of

Γ =
(δm)2 + Vn̄i

Vn − Vn̄r + iVn̄I
. (26)

CONCLUSION AND FUTURE WORK

The next step is to calculate the probability of a neutron turning into an anti-neutron

inside a nucleus. We can do this in a way that similar to the probability calculations in the

free space, The main difference between these two calculations is that we have to switch the

eigenvalues to those to do with the neutrons in a nucleus. Once we do this, we can then

apply the potentials of a neutron star to this equation and then calculate the densities.

[1] A. D. Sakharov, Soviet Physics Uspekhi 34, 392 (1991).

[2] D. G. Phillips, II et al., Phys. Rept. 612, 1 (2016).

7


