

Jet quenching at RHIC and the LHC: a status report

Peter Jacobs Lawrence Berkeley National Laboratory

STAR@RHIC

ALICE@LHC

WSU 1/22/2021

Jet quenching status report

Hallmark of QCD: running of the coupling

Now consider "matter"

When many particles interact, complex new things happen → emergent phenomena

Phase diagram of water

Hadron Gas

Vacuum

0 MeV

0 MeV

Nuclear

Matter

900 MeV

Color

Superconductor

Neutron Stars

Baryon Chemical Potential

Finite Temperature QCD on the lattice ($\mu_B=0$)

Au+Au $\sqrt{s_{NN}}=200 \text{ GeV}$

Hot QCD in the laboratory

Pb+Pb
$$\sqrt{s_{NN}}$$
= 5 TeV

5

Testing perturbative QCD at the LHC: inclusive jet production in p+p collisions

Magnificent achievement of QCD

• needed 30 years of development in theory, experiment, and algorithms to connect the two

Infrared and collinear-safe (IRC-safe) jet reconstruction algorithms:

- Integrate out all hadron degrees of freedom
- Same procedures applied to pQCD theory and experiment
- Enables direct, precise and improvable comparison of theory/experiment

→ jets measure partons

Jets in QCD matter

Jet quenching status report

Energy loss in QED

Fractional energy loss of an (on-shell) electron or positron in Lead

Figure 33.11: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization

Energy loss in QED

Fractional energy loss of an (on-shell) electron or positron in Lead

Figure 33.11: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization

Jet quenching in one slide

Jet shower in-medium

Jet shower in vacuum

Evolution of highly virtual parton via gluon radiation

Quantum interference \rightarrow angle-ordering

- hardest radiation is most collinear with jet axis
- Precise understanding in pQCD
- Accurately calculable with QCD-based Monte Carlo models

- vacuum shower
- medium-induced gluon emission

These processes happen simultaneously and interfere

Angle-ordering is modified or destroyed

WSU 1/22/2021

Jet quenching: observable consequences I

Jet quenching: observable consequences II

3. Jet deflection

4. Recovery of large-angle radiation

Jet quenching: observable consequences III

Four distinct manifestations of jet quenching:

- Jet energy loss
- Jet substructure modification
- Jet deflection
- Large-angle radiation

Different manifestations of same underlying physics

- All must occur if any of them does
- Probe different aspects of jet quenching
- Different experimental systematics as fn of kinematics and collision system
- Different theoretical sensitivity as fn of kinematics and collision system

This is an opportunity:

Measure the same physics multiple ways and require consistency

 \rightarrow needs a theoretical framework...

Radiative energy loss in QCD

Thermal field theory:

$$C(\mathbf{q}) = \frac{g_s^2 m_D^2 T}{\mathbf{q}^2 (\mathbf{q}^2 + m_D^2)}$$
$$m_D^2 = 3g_s^2 T^2 / 2$$

 $C(\mathbf{q}) =$ Scattering kernel $\mathbf{q} =$ Momentum transfer

$$T = \text{Temperature} \\ m_D = \text{Debye mass}$$
 QGP properties

$$\hat{q} \equiv \frac{\left\langle k_{\perp}^{2} \right\rangle}{L} \sim \frac{1}{L} \int d\mathbf{q}^{2} \mathbf{q}^{2} C\left(\mathbf{q}\right)$$

Connecting qhat to measurements

BDMPS: multiple soft scattering approximation

- Gives simple and intuitive formulas
- Connection to other approaches must be checked

Medium-induced jet energy loss: $\Delta E_{med} \sim \alpha_s \hat{q} L^2$

Medium-induced angular broadening:

 $\left\langle k_{\rm T}^2 \right\rangle \sim \left\langle \Delta \varphi^2 \right\rangle \sim \alpha_s \hat{q} L$

Taxonomy of current jet quenching measurements

- Driven by experimental considerations: arrows connect observables with just one thing changed
- How do these map onto theory?

Confusing! How to make sense of so many observables?

Go systematically: start with a few key measurements and build up the picture...

Jet quenching via high p_T hadrons

Inclusive hadron suppression: RHIC vs LHC

RHIC

LHC

RHIC/LHC: Qualitatively similar, quantitatively different

• interplay between energy loss (~matter density) and spectrum shape

Purdue University Nov 3 2016

Jets in QCD Matter

Connecting experiment and theory...

Modular framework: multi-stage jet quenching calculations Goal: general tool for entire HI community

JETSCAPE: measuring \hat{q} using incl hadrons

This is the end of the quantitative part of the talk

Remainder of talk is work-in-progress

Key issue: theory-experiment connection

Inclusive hadron vs inclusive jet suppression

Inclusive hadron suppression driven by energy transport away from the hardest branch in the jet

• Insensitive to specific mechanisms of energy transport

More comprehensive: reconstructed jets

- very challenging due to large backgrounds, especially at RHIC
- but problem has been solved

Inclusive jets in A+A: spectra

WSU 1/22/2021

High-quality data over a vast kinematic range

Inclusive jets in A+A: R_{AA}

Inclusive jet R_{AA}: comparison to models

Diverse jet quenching calculations based on pQCD + various approximations for jet+medium interaction

Current models work well over a wide range

Data relatively featureless, do not discriminate

How to make progress?

1. JETSCAPE: go beyond current formulation of qhat to capture full dynamics of jet-medium interaction \rightarrow global fits to hadron&jet data

2. Other observables with orthogonal parametric dependencies

30

Jet acoplanarity: in-medium hard scattering ("Rutherford experiment")

Discrete scattering centers or effectively continuous medium?

d'Eramo et al., JHEP 1305 (2013) 031

Distribution of momentum transfer k_T

Strong coupling: Gaussian distribution

What are the quasi-particles?

- high Q²: bare q and g
- low-ish Q^2 :
 - thermal-mass glue
 - magnetic monopoles
 - ...?

Jet acoplanarity: in-medium soft deflection

For intuition use BDMPS theory: multiple soft scattering approximation

Different parametric dependencies! Better model discrimination...?

Side note: using jet scattering to measure the QGP is an old idea but experimentally very challenging

• techniques now in place

9/24/2020

Jet acoplanarity: data

Significant background: Initial-state (Sudakov) radiation

L. Chen et al., Phys.Lett.B 773 (2017) 672

First- generation ALICE+STAR measurements:

no medium-induced acoplanarity observed above background Second-generation measurements with greater precision in progress....

Jet acoplanarity: ALICE Run 2

Phenomenology: in-medium energy loss measured via jet spectrum shift

Inclusive jet and X+jet measurements

RHIC: energy loss similar for different probes

• possible R-dependence LHC: energy loss larger than RHIC Confrontation with theory calculations TBD

Jet quenching: Outlook

LHC

- Run 3 starts this year (?); factor ~10 luminosity increase
- ALICE: essentially a new detector with vastly improved capabilities
- ATLAS/CMS moderate improvements (major upgrades 2025)
- Through Run 4 (2029): Pb+Pb @10 nb ⁻¹

RHIC

- New detector focused on jet physics: sPHENIX
- Upgraded STAR
- Through 2025: STAR Au+Au@110 nb ⁻¹; sPHENIX Au+Au @23 nb ⁻¹

\rightarrow At both facilities: factor ~10 increase in data, much improved instrumentation

But experimental advances alone are not sufficient for quantitative understanding of jet quenching and the QGP

Theory and modelling:

- Conceptual and calculational advances in modelling of in-medium jet modification
- Rigorous-large scale global fits to a wide range of judiciously chosen jet and hadron data
- \rightarrow Bayesian inference using JETSCAPE

Much more to come!

Extra slides

Measuring \hat{q} : inclusive hadron suppression

JET Collaboration Phys.Rev. C90 (2014) 1, 014909

Fit pQCD-based models to **single-hadron suppression** data at RHIC and LHC

For a 10 GeV light quark at time 0.6 fm/c: RHIC : $\hat{q} \approx 1.2 \pm 0.3 \text{ GeV}^2/\text{fm}$

LHC : $\hat{q} \approx 1.9 \pm 0.7 \text{ GeV}^2/\text{fm}$

Reasonable and improvable precision

Cold matter (e+A at HERA): $\hat{q} \approx 0.02 \text{ GeV}^2/\text{fm}$

RHIC && LHC: the present

STAR

sPHENIX (under construction)

RHIC: the future

Beam Use Request to RHIC PAC, Sept 2020

STAR

sPHENIX

year	minimum bias $[\times 10^9 \text{ events}]$	high-p all vz	vz < 70 cm	osity [nb ⁻¹] vz <30cm
2014 2016	2	26.5	19.1	15.7
2023	10	43	38	32
2025	10	58	52	43

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%- <i>str</i>]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

Au+Au total int lumi through 2025:

- STAR: 110 nb⁻¹
- sPHENIX: 23 nb⁻¹

