FINAL EXAMINATION, MAT 2010

April 28, 2023

INSTRUCTIONS

Write your solutions in a blue book. To receive full credit you must show all work. You are allowed to use an approved graphing calculator unless otherwise indicated. Simplify your answers when possible, but use the precise value rather than an approximation when you have a choice. (Example: If the actual answer is π, then write π, not 3.14.) The 12 problems are worth a total of 150 points. The time limit is 2 hours [120 minutes].

Use of cell phones and other electronic devices is not allowed. They should be turned off and put away.

\#1. (10 points) Use the definition of the derivative to differentiate the following function.

$$
f(x)=3+\sqrt{x}
$$

(No credit will be awarded for calculating the derivative without using the definition of the derivative.)
\#2. (7 points each) Find the exact value of each of the following limits. Write " ∞," " $-\infty$," or "does not exist" if appropriate. It is particularly important to show detailed algebraic work in finding each limit rather than plugging in numbers to estimate the limit.
(a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{e^{x}-1}$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{2 x^{2}-5 x+2}$
(c) $\lim _{x \rightarrow \infty} \frac{3 x+2}{\sqrt{5 x^{2}-x}}$
\#3. (7 points each) Differentiate the following functions.
(a) $f(x)=\sin (2 x) \ln (x+1)$
(b) $g(x)=\arctan \left(\frac{1}{x}\right)$
\#4. Evaluate.
(a) (7 points) $\int\left[\frac{3}{x}-5 \sec x \tan x+\sec ^{2} x\right] d x$
(b) (8 points) $\int_{1}^{4}\left[\frac{5}{\sqrt{x}}-3\right] d x$
\#5. (10 points) Find all x values at which the following function has horizontal tangents,

$$
f(x)=\frac{2 x^{2}+3 x}{x^{2}-3}
$$

\#6. (10 points) The graph of a function $f(x)$ is shown below.

Sketch the graph of the derivative $f^{\prime}(x)$ showing clearly where $f^{\prime}(x)$ is positive and negative, and intervals where $f^{\prime}(x)$ increases or decreases.
\#7. (10 points) Using the left-endpoint Riemann sum with 4 equal subintervals estimate the area bounded above by the curve $f(x)=\frac{x}{x+1}$ and below by the x-axis on the interval $[1,9]$. Give exact answer.
\#8. (10 points) Let x and y be positive numbers such that $x+3 y=54$. Find the values of x and y that will give the largest possible value of the quantity $Q=x y^{2}$.
\#9. (10 points) The graph of a function f is shown below.

Define a new function

$$
g(x)=\int_{-5}^{x} f(t) d t, \quad-5 \leq x \leq 5 .
$$

(a) Find $g(1)$.
(b) Give the subinterval(s) of the interval $[-5,5]$ where $g(x)$ is increasing.
(c) Give the subinterval(s) of the interval $[-5,5]$ where $g(x)$ is concave down.
(d) Give value(s) of x in the interval $(-5,5)$ where $g(x)$ has local maximum value(s).
(e) Find
(i) $g^{\prime}(3)$
(ii) $g^{\prime \prime}(3)$
(iii) $g^{\prime \prime}(-1)$
\#10. (10 points) Sketch the graph of a function f such that all the following conditions are satisfied:

- $\lim _{x \rightarrow 3} f(x)$ exists, but $f(3)$ is undefined;
- $\lim _{x \rightarrow-2} f(x)=\infty, \lim _{x \rightarrow 1^{-}} f(x)=\infty$, and $\lim _{x \rightarrow 1^{+}} f(x)=-\infty$;
- $\lim _{x \rightarrow \infty} f(x)=-2$.
\#11. (10 points) Air is being pumped into a spherical balloon so that its volume V increases at a rate of $100 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius r of the balloon increasing when the diameter is 20 cm ? [The volume of a spherical balloon is given by $V=\frac{4}{3} \pi r^{3}$.]
\#12. (20 points) Given the following information for a function $f(x)$.
(i) $f(x)$ is defined for all real numbers
(ii) $f^{\prime}(x)=\frac{9\left(x^{2}-4\right)}{\left(x^{2}+4\right)^{2}}$
(iii) $f^{\prime \prime}(x)=-\frac{18 x\left(x^{2}-12\right)}{\left(x^{2}+4\right)^{3}}$
(iv) $f(0)=0$
(v) $\lim _{x \rightarrow \infty} f(x)=0$
(vi) $\lim _{x \rightarrow-\infty} f(x)=0$
(vii) The function has a local maximum value of 2.25 .

Find
(a) All intervals on which $f(x)$ is increasing or decreasing.
(b) x-value(s) of all local (relative) extrema.
(c) All intervals where $f(x)$ is concave up or concave down.
(d) x-value(s) of all inflection points.
(e) Sketch the graph of $f(x)$. Label all asymptotes, local extrema, and inflection points.

