FINAL EXAMINATION, MAT 2010

April 24, 2020
NOTE: Write your solutions on clean sheets of paper using a ball pen. To receive full credit you must show all work. You are allowed to use an approved graphing calculator unless otherwise indicated. Simplify your answer when possible, but use the precise value rather than an approximation when you have a choice. (Example: If the actual answer is π, then write π, not 3.14.) The 12 problems are worth a total of 150 points. The time limit is 2 hours [120 minutes].

Cell phones are strictly prohibited!

1. (10 points) Use the definition of the derivative to differentiate the following function.

$$
f(x)=\frac{3}{\sqrt{x+1}}
$$

2. (7 points each) Find the exact value of each of the following limits. Write " ∞, " " $-\infty$," or "does not exist" if appropriate. It is particularly important to show your work on this problem.
(a) $\lim _{t \rightarrow \infty} \frac{1+e^{2 t}}{1-e^{2 t}}$
(b) $\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x^{2}-4}$
3. (7 points each) Differentiate the following functions. Simplify your answer.
(a) $f(x)=\arcsin \left(x^{3}\right)$
(b) $g(x)=\frac{3-2 x}{x+5}$
(c) $h(x)=\tan x \cdot \ln (2 x+3)$
4. Evaluate. Simplify your answer.
(a) $\left(7\right.$ points) $\int\left[\frac{1}{\sqrt[3]{t^{2}}}+\frac{1}{1+t^{2}}-\sec t \tan t\right] d t$
(b) (8 points) $\int_{1}^{2}\left[\frac{1}{x^{2}}-\frac{1}{x}\right] d x$
5. (10 points) Find $\frac{d y}{d x}$ for the curve given by the equation $\quad e^{y-x}=\sin y-x^{2}$.
6. (10 points) The value V (in dollars) of a painting t years after it is purchased is modeled by the function

$$
V=\frac{100 t^{2}+50}{t}+400 \quad 1 \leq t \leq 5
$$

(a) Find the total change in the value of the painting between the first $(t=1)$ and fifth $(t=5)$ years. Give proper units.
(b) Find the average rate of change in the value of the painting between the first $(t=1)$ and fifth $(t=5)$ years. Give proper units.
(c) Find the instantaneous rate of change in the value of the painting after year four $(\mathrm{t}=4)$. Give proper units.
7. (10 points) The graph of a function $f(x)$ is given below. Sketch the graph of the derivative $f^{\prime}(x)$.

8. (10 points) Find the absolute maximum value and the absolute minimum value of the function $f(x)=x \sqrt{1-x^{2}}$ on the interval $[-1,1]$.
9. (10 points) A revolving light located 5 kilometers from a straight shoreline turns with a constant angular speed of $3 \mathrm{rad} / \mathrm{min}$. With what speed is the spot of light moving along the shore when the beam makes an angle of 60° with the shoreline as shown in the figure below?

10. (10 points) The graph of a function f is shown below on the interval $[0,2 \pi]$. Define a new

function $g(x)=\int_{0}^{x} f(t) d t$.
(a) Give all interval(s) in $(0,2 \pi)$ where g is decreasing.
(b) Give x value(s) in $(0,2 \pi)$ where g has a local maximum value.
(c) Give all interval(s) in $(0,2 \pi)$ where g is concave up.
11. (10 points) A particle is moving and its position function at time t (measured in seconds) is given by

$$
s(t)=\cos ^{2} t+\sin t, \quad \text { where } \quad 0 \leq t \leq 2 \pi
$$

(a) Find the velocity $v(t)$ of the particle at any time t.
(b) Find all times t in the interval $[0,2 \pi]$ when the particle will be at rest.
12. (20 points) Sketch the graph of a single function $f(x)$ which satisfies all of the following conditions. Indicate and label all local maxima and minima, intervals of increase and decrease, points of inflection, intervals where f is concave up and where it is concave down. Also give equations of asymptotes and label them.
(i) $f(x)$ is defined for all real numbers
(ii) $f^{\prime}(x)=-\frac{8\left(x^{2}-4\right)}{\left(x^{2}+4\right)^{2}}$
(iii) $f^{\prime \prime}(x)=\frac{16 x\left(x^{2}-12\right)}{\left(x^{2}+4\right)^{3}}$
(iv) $f(0)=0$
(v) $f(1)=1.6$
(vi) $\lim _{x \rightarrow \infty} f(x)=0$
(vii) $\lim _{x \rightarrow-\infty} f(x)=0$

