
MAT 2010 - Winter 2019 Exam Solutions

Problem 1

Set up the difference quotient:
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Using the definition of the derivative:
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Problem 2

Part(a): The limit does not exist since the directional limits do not agree:
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Part(b):
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Part(c): The limit does not exist since the left-sided limit is not defined:

lim
x→0−

x2 ln(x) = (0−)2 ln(0−) Does Not Exist

since ln(x) is not defined for negative values

Problem 3

Part(a):

f ′(x) =
(cos(x))′ arctan(x)− cos(x)(arctan(x))′

(arctan(x))
2 =

− sin(x) arctan(x)− cos(x) 1
1+x2

(arctan(x))
2

Part(b):

h(x) = 7[sec(3x)]6(sec(3x))′ = 7[sec(3x)]6 sec(3x) tan(3x)(3x)′ = 21[sec(3x)]6 sec(3x) tan(3x)
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Problem 4

Part(a):∫ [
sec2(x) +

1√
1− x2

]
dx =

∫
sec2(x)dx+

∫
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Problem 5
d

dx
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Problem 6

Horizontal tangents correspond to points where the derivative is zero.
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To get the points, substitute the x-values back into the original function f(x):
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Problem 7

In order to take this derivative we need to rewrite the original function to take advantage of
logarithm properties:

y = e
ln
(
tan(x)x

3
)
= ex

3 ln(tan(x))

Take the derivative:
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3 ln(tan(x))
)′
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Problem 8

f(x) has positive slopes on (−∞,−1) ∪ (−1, 4) and negative slopes on (4,∞). The slope is not
defined at x = −1 or at x = 4 since the graph’s slope does not make sense at the asymptote and the
corner. Putting this information together with some estimates for the slopes we can get a graph:
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Problem 9

We want two numbers x > 0 and y > 0 such that x + y = 120 and f(x) = x2y is at a maximum.
Solving the first equation for y gives y = 120−x. Substitute this into f(x) and take it’s derivative:

f ′(x) =
(
x2(120− x)

)′
=
(
120x2 − x3

)′
= 240x − 3x2. The maximum will when f ′(x) = 0, so

0 = 240x − 3x2 = 3x(80 − x) =⇒ x = 0, 80. Since we want x to be positive (x > 0) then the
solution is x = 80. Double check this is a maximum by plugging x = 80 in the second derivative:
f ′′(x) = 240 − 6x =⇒ f ′′(80) = −240 meaning f(x) is concave down at x = 80, so a maximum
occurs. The final answer is x = 80 and y = 40.
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Problem 10

Since t is the number of hours past midnight, 6pm to midnight corresponds to t = 6 + 12 = 18 to
t = 24. ∫ 24

18

100 + 72t− 3t2dt = 100t+
72t2

2
− 3t3

3

∣∣∣∣24
18

= 100(24) + 36(24)2 − 233 −
(
100(18) + 36(18)2 − 183

)
= 1690 gallons

Problem 11

The function g(x) gives area under the curve from 0 to x. So, g(8) is the area under the curve from
0 to 8. This is the same as adding the areas of the polygons labeled I,II,III in the picture below
with negative areas associated with regions below the x-axis.

g(8) = −AI +AII +AIII = −1

2
· (2)(2 + 4) +

1

2
· 2 · 1 + 1

2
· 2 · 3

I

III

II
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Problem 12

Sign chart for f ′(x):

cos(x)+

√
3

2
= 0 =⇒ cos(x) = −

√
3

2
=⇒ x = cos−1

(
−
√
3

2

)
=⇒ x =

5π

6
,
7π

6
critical numbers on [0, 2π]

f ′(x) has no ”bad” numbers where it is undefined.

5π
6

7π
6

f ′(x)

Between 0 and 2π, f(x) is increasing on (0, 5π
6 ) ∪ ( 7π6 , 2π)

Between 0 and 2π, f(x) is decreasing on ( 5π6 , 7π
6 )

Between 0 and 2π, f(x) has a local max x = 5π
6

Between 0 and 2π, f(x) has a local min x = 7π
6

Sign chart for f ′′(x):

−sin(x) = 0 =⇒ x = 0, π, 2π critical numbers on [0, 2π]

f ′′(x) has no ”bad” numbers where it is undefined.

f ′′(x)
π0 2π

Between 0 and 2π, f(x) is concave down on (0, π)
Between 0 and 2π, f(x) is concave up on (π, 2π)
Between 0 and 2π, f(x) has one inflection point at x = π
Putting all of this information together we get the sketch:

2ππ
5π
6

7π
6

local max

local min

inflection point at (π, 2.7)
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