MAT 2010 - Winter 2019 Exam Solutions

Problem 1

Set up the difference quotient:
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Using the definition of the derivative:
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Problem 2
Part(a): The limit does not exist since the directional limits do not agree:
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Part(c): The limit does not exist since the left-sided limit is not defined:
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since In(z) is not defined for negative values

Problem 3
Part(a):
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Part(b):

h(z) = 7[sec(3x)]%(sec(3z)) = 7[sec(3x)]° sec(3z) tan(3z)(3z) = 21[sec(3x)]° sec(3z) tan(3x)



Problem 4

Part(a):

/ [secZ(x) + \/11_7} dx = /secZ(w)dx + / ﬁdﬂ& = tan(z) + arcsin(x) + C

Part(b):
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Problem 5
d d d d
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Problem 6

Horizontal tangents correspond to points where the derivative is zero.
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To get the points, substitute the z-values back into the original function f(z):
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Problem 7

In order to take this derivative we need to rewrite the original function to take advantage of
logarithm properties:
_ eln (tan(z)‘13> _ em3 In(tan(z))

Take the derivative:
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Problem 8

f(z) has positive slopes on (—oo, —1) U (—1,4) and negative slopes on (4,00). The slope is not
defined at © = —1 or at = = 4 since the graph’s slope does not make sense at the asymptote and the
corner. Putting this information together with some estimates for the slopes we can get a graph:

Problem 9

We want two numbers x > 0 and y > 0 such that x +y = 120 and f(z) = 2%y is at a maximum.
Solving the first equation for y gives y = 120 — x. Substitute this into f(x) and take it’s derivative:
f(x) = (x2(120—x))l = (12022 —x3)l = 240z — 32?. The maximum will when f'(z) = 0, so
0 = 2407 — 322 = 32(80 — ) = x = 0,80. Since we want z to be positive (x > 0) then the
solution is x = 80. Double check this is a maximum by plugging x = 80 in the second derivative:
f"(x) =240 — 62 = f”(80) = —240 meaning f(z) is concave down at z = 80, so a maximum
occurs. The final answer is x = 80 and y = 40.



Problem 10

Since t is the number of hours past midnight, 6pm to midnight corresponds to t = 6 + 12 = 18 to
t=24.

100 + 72¢ — 3t2dt = 100t + — — —
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=100(24) + 36(24)* — 23° — (100(18) + 36(18)* — 18°) = 1690 gallons

Problem 11

The function g(z) gives area under the curve from 0 to z. So, g(8) is the area under the curve from
0 to 8. This is the same as adding the areas of the polygons labeled LILIII in the picture below
with negative areas associated with regions below the z-axis.
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Problem 12
Sign chart for f/(z):

3 3 3 om 7
cos(x)+g =0 = cos(z) = —i — r=cos ' (—{) = x= %, % critical numbers on [0, 27]

2

f/(z) has no "bad” numbers where it is undefined.

+ — +

/() , ,
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Between 0 and 27, f(z) is increasing on (0, 3%) U (IX, 2)
- - 5w Ix
Between 0 and 27, f(x) is decreasing on (%, )
Between 0 and 27, f(z) has a local max x = 37
Between 0 and 27, f(z) has a local min z = ¢

Sign chart for f”(x):

—sin(x) =0 = x = 0,7, 27 critical numbers on [0, 27]

f"(x) has no ”bad” numbers where it is undefined.
@) . _t
0 7'r 2
Between 0 and 27, f(x) is concave down on (0, 7)
Between 0 and 27, f(x) is concave up on (m, 2)
Between 0 and 27, f(z) has one inflection point at z = 7

Putting all of this information together we get the sketch:
A

inflection point at (7, 2.7)

local max

* local min
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