FINAL EXAMINATION, MAT 2010 April 26, 2019

Write your solutions in a blue book. To receive full credit you must show *all* work. You are allowed to use an *approved* graphing calculator unless otherwise indicated. Simplify your answer when possible, but use the precise value rather than an approximation when you have a choice. (Example: If the actual answer is π , then write π , not 3.14.) The 12 problems are worth a total of 150 points. The time limit is 2 hours [120 minutes].

Cell phones are strictly prohibited!

1. (10 points) Use the **definition** of the derivative to differentiate the following function.

$$f(x) = \sqrt{2 - x}$$

2. (7 points each) Find the exact value of each of the following limits. Write " ∞ ," " $-\infty$," or "does not exist" if appropriate. It is particularly important to show your work on this problem.

(a)
$$\lim_{t \to 3} \frac{|t-3|}{t^2 - 2t - 3}$$

(b) $\lim_{x \to \infty} \frac{\sqrt{x^4 + 5x}}{2x - 5}$
(c) $\lim_{x \to 0} x^2 \ln(x)$

3. (7 points each) Differentiate the following functions. Simplify your answer.

(a)
$$f(x) = \frac{\cos(x)}{\arctan(x)}$$

(b) $h(x) = [\sec(3x)]^7$

4. Evaluate. Simplify your answer.

(a) (7 points)
$$\int \left[\sec^2 x + \frac{1}{\sqrt{1 - x^2}}\right] dx$$

(b) (8 points) $\int_1^4 \left[\frac{1}{x} + \frac{1}{\sqrt{x}}\right] dx$

5. (10 points) Find $\frac{dy}{dx}$ for

$$\sin(xy) + \pi = e^{x-y}$$

- 6. (10 points) Find the point(s) on the curve $y = x^3 3x^2 + x + 3$ where the tangent is horizontal.
- 7. (10 points) Find the derivative of

$$y = (\tan x)^{x^{\mathfrak{d}}}$$

8. (10 points) The graph of a function f(x) is given below. Sketch the graph of the derivative

f'(x) clearly showing the intervals where f'(x) > 0, where f'(x) < 0, and the x-values where f'(x) = 0.

- 9. (10 points) Find two positive real numbers x and y such that they add to 120 and the quantity x^2y is maximum.
- 10. (10 points) On a typical day, a city consumes water at the rate of $r(t) = 100 + 72t 3t^2$ (in thousands of gallons per hour), where t is the number of hours past midnight. How much water is consumed between 6 pm and midnight?

11. (10 points) The graph of a function f(x) is shown below.

Define a new function $g(x) = \int_0^x f(t) dt$. Find g(8).

- 12. (20 points) Sketch the graph of a single function f(x) on the interval $[0, 2\pi]$, which satisfies all of the following conditions. Indicate and label all local maxima and minima, intervals of increase and decrease, points of inflection, concavity, and asymptotes.
 - (i) f(x) is defined for all real numbers

(ii)
$$f'(x) = \cos x + \frac{\sqrt{3}}{2}$$

- (iii) $f''(x) = -\sin(x)$
- (iv) f(0) = 0
- (v) $f(\pi) \approx 2.7$
- (vi) $f(2\pi) \approx 5.4$