FINAL EXAMINATION, MAT 2010

December 16, 2022

INSTRUCTIONS

Write your solutions in a blue book. To receive full credit you must show all work. You are allowed to use an approved graphing calculator unless otherwise indicated. Simplify your answers when possible, but use the precise value rather than an approximation when you have a choice. (Example: If the actual answer is π, then write π, not 3.14.) The 12 problems are worth a total of 150 points. The time limit is 2 hours [120 minutes].

Cell phones are strictly prohibited!

1. (10 points) Use the definition of the derivative to differentiate the function

$$
f(x)=\sqrt{5 x-4}
$$

(No credit will be awarded for calculating the derivative without using the definition of the derivative.)
2. (7 points each) Find the exact value of each of the following limits. Write " ∞," " $-\infty$," or "does not exist" if appropriate. It is particularly important to show your work on this problem. Numerical approximations do not constitute an acceptable solution.
(a) $\lim _{x \rightarrow 2} \frac{\frac{1}{x+4}-\frac{1}{3 x}}{x-2}$
(b) $\lim _{x \rightarrow 5^{-}} \frac{|x-5|}{(x-5)^{2}}$
(c) $\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{1-x}}$
3. (7 points each) Differentiate the following functions.
(a) $f(x)=\sqrt[3]{x^{2}} \cdot(x+3)^{5}$
(b) $h(x)=\ln (\arctan (3 x))$
4. Evaluate.
(a) (7 points) $\int\left(\sqrt{2} \sec x \tan x+\sec ^{2} x-\frac{6}{\sqrt{1-x^{2}}}\right) d x$
(b) (8 points) $\int_{1}^{e}\left(x-\frac{1}{x}\right) d x$
(Give an exact answer in (b). Do not convert to decimals.)
5. (10 points) The graph of a function $f(x)$ is given below.

Find each of the following. [Use $\infty,-\infty$, or "does not exist" where appropriate.]
(a) $\lim _{x \rightarrow 2} f(x)$
(b) $\lim _{x \rightarrow \infty} f(x)$
(c) $\lim _{x \rightarrow-3^{-}} f(x)$
(d) $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
(e) $\lim _{x \rightarrow 0} f(x)$
6. (10 points) For the curve

$$
x^{2}+2 x y+4 y^{2}=13
$$

(a) Find $\frac{d y}{d x}$.
(b) Find the equation of the tangent line to the curve at the point $(-1,2)$. Write your answer in slope-intercept form.
7. (10 points) Sketch the graph of a function $g(x)$ that has all of the following properties:

- g is defined for all real numbers except for $x=0$.
- g is continuous everywhere except at $x=-2,0$, and 2 .
- g has a removable discontinuity at $x=-2$.
- g has an infinite discontinuity at $x=0$.
- g has a jump discontinuity at $x=2$.
- $\lim _{x \rightarrow-\infty} g(x)=\infty$
- $\lim _{x \rightarrow \infty} g(x)=0$
- $g(x)$ is continuous but not differetiable at $x=4$

8. (10 points) A particle moves horizontally in a straight line with position function given by

$$
s(t)=\sin ^{2} t+\cos t \quad 0 \leq t \leq 2 \pi
$$

where, t is measured in minutes (min) and s is measured in feet (ft). When is the particle moving forward (moving in the positive direction)?
9. (10 points) You are given that

$$
f^{\prime \prime}(x)=3 \sqrt{x}+2, \quad f(0)=7, \quad \text { and } \quad f^{\prime}(0)=3 .
$$

Find $f(x)$.
10. (10 points) Use the differential or a linear approximation to estimate $\sqrt{14.9}$. Give answer correct to two decimal places.
11. (10 points) The concentration of a drug in the blood stream, t hours after injection into the muscle tissue, is given by $C(t)=\frac{2 t}{16+t^{2}}$. When will the concentration have a maximum value?
12. (20 points) Given the following information for a function $f(x)$

- $f(x)$ is defined and continuous for all real numbers except at $x=-3$ and $x=3$
- $x=-3$ and $x=3$ are vertical asymptotes of $f(x)$
- $\lim _{x \rightarrow \infty} f(x)=\infty$
- $\lim _{x \rightarrow-\infty} f(x)=\infty$
- $f^{\prime}(x)=\frac{2 x}{x^{2}-9}$
- $f^{\prime \prime}(x)=-\frac{2\left(x^{2}+9\right)}{\left(x^{2}-9\right)^{2}}$
- $f(0) \approx 2.2$

Find
(a) All intervals on which $f(x)$ is increasing or decreasing.
(b) x-value(s) of all local (relative) extrema.
(c) All intervals where $f(x)$ is concave up or concave down.
(d) x-value(s) of all inflection points.
(e) Sketch the graph of $f(x)$. Label all asymptotes, local extrema, and inflection points.

