Problem 1

Set up the difference qoutient:

$$
\begin{aligned}
& \frac{1}{h}\left(\frac{3}{3(x+h)-2}-\frac{3}{3 x-2}\right)=\frac{1}{h}\left(\frac{3}{3 x+3 h-2}-\frac{3}{3 x-2}\right)=\frac{1}{h}\left(\frac{3 x-2}{3 x-2} \cdot \frac{3}{3 x+3 h-2}-\frac{3}{3 x-2} \cdot \frac{3 x+3 h-2}{3 x+3 h-2}\right) \\
& \quad=\frac{1}{h}\left(\frac{3(3 x-2)}{(3 x-2)(3 x+3 h-2)}-\frac{3(3 x+3 h-2)}{(3 x-2)(3 x+3 h-2)}\right)=\frac{1}{h}\left(\frac{3(3 x-2)-3(3 x+3 h-2)}{(3 x-2)(3 x+3 h-2)}\right) \\
& \quad=\frac{1}{h}\left(\frac{9 x-6-9 x-9 h+6)}{(3 x-2)(3 x+3 h-2)}\right)=\frac{1}{h}\left(\frac{-9 h}{(3 x-2)(3 x+3 h-2)}\right)=\frac{-9}{(3 x-2)(3 x+3 h-2)}
\end{aligned}
$$

So, by definition of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-9}{(3 x-2)(3 x+3 h-2)}
$$

As $h \rightarrow 0$ then,

$$
\frac{-9}{(3 x-2)(3 x+3(0)-2)}=\frac{-9}{(3 x-2)(3 x-2)}=\frac{-9}{(3 x-2)^{2}}
$$

Problem 2

Part(a):

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\frac{1}{x+4}-\frac{1}{3 x}}{x-2}=\lim _{x \rightarrow 2} \frac{1}{x-2}\left(\frac{3 x}{3 x} \cdot \frac{1}{x+4}-\frac{1}{3 x} \cdot \frac{x+4}{x+4}\right)=\lim _{x \rightarrow 2} \frac{1}{x-2}\left(\frac{3 x}{3 x(x+4)}-\frac{x+4}{3 x(x+4)}\right) \\
= & \lim _{x \rightarrow 2} \frac{1}{x-2} \cdot \frac{3 x-x-4}{3 x(x+4)}=\lim _{x \rightarrow 2} \frac{1}{x-2} \cdot \frac{2 x-4}{3 x(x+4)}=\lim _{x \rightarrow 2} \frac{1}{x-2} \cdot \frac{2(x-2)}{3 x(x+4)}=\lim _{x \rightarrow 2} \frac{2}{3 x(x+4)}=\frac{2}{3 \cdot 2 \cdot 6}=\frac{1}{18}
\end{aligned}
$$

Part(b):

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{2}+3}}{x+7}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(2+\frac{3}{x^{2}}\right)}}{x\left(1+\frac{7}{x}\right)}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{2+\frac{3}{x^{2}}}}{x\left(1+\frac{7}{x}\right)}=\lim _{x \rightarrow \infty} \frac{|x| \sqrt{2+\frac{3}{x^{2}}}}{x\left(1+\frac{7}{x}\right)}
$$

Since x is positive as $x \rightarrow \infty$, we replace $|x|$ with x.

$$
=\lim _{x \rightarrow \infty} \frac{x \sqrt{2+\frac{3}{x^{2}}}}{x\left(1+\frac{7}{x}\right)}=\lim _{x \rightarrow \infty} \frac{\sqrt{2+\frac{3}{x^{2}}}}{1+\frac{7}{x}}=\frac{\sqrt{2+\frac{3}{" \infty}}}{1+\frac{7}{" \infty}}=\frac{\sqrt{2+0}}{1+0}=\sqrt{2}
$$

Part(c):

$$
\lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{4}}{x-2}=\lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{4}}{x-2}=\frac{e^{4}-e^{4}}{2-2}=\frac{0}{0}
$$

This form let's us use L'Hôpital's rule:

$$
\lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{4}}{x-2}=\lim _{x \rightarrow 2} \frac{\left(e^{x^{2}}-e^{4}\right)^{\prime}}{(x-2)^{\prime}} \lim _{x \rightarrow 2} \frac{2 x e^{x^{\underline{2}}}}{1}=2.2 e^{2^{2}}=4 e^{4}
$$

Problem 3

Part(a):

$f^{\prime}(x)=\left(\left[\sin \left(3 x^{2}+x\right)\right]^{4}\right)^{\prime}=4\left[\sin \left(3 x^{2}+x\right)\right]^{3}\left(\sin \left(3 x^{2}+x\right)\right)^{\prime}=4\left[\sin \left(3 x^{2}+x\right)\right]^{3} \cos \left(3 x^{2}+x\right) \cdot\left(3 x^{2}+x\right)^{\prime}$

$$
=4\left[\sin \left(3 x^{2}+x\right)\right]^{3} \cos \left(3 x^{2}+x\right) \cdot(6 x+1)
$$

Part(b):
$g^{\prime}(x)=(\cos (2 x) \ln (x-1))^{\prime}=\cos (2 x)^{\prime} \ln (x-1)+\cos (2 x) \ln (x-1)^{\prime}=-2 \sin (2 x) \ln (x-1)+\cos (2 x) \frac{1}{\mathrm{x}-1}$

Problem 4

Part(a):

$$
\begin{aligned}
\int\left(\frac{5}{t^{2}+1}-\frac{2}{\sqrt{1-t^{2}}}+\sqrt{2}\right) d & =\int \frac{5}{t^{2}+1} d t-\int \frac{2}{\sqrt{1-t^{2}}} d t+\int \sqrt{2} d t=5 \int \frac{1}{t^{2}+1} d t-2 \int \frac{1}{\sqrt{1-t^{2}}} d t+\int \sqrt{2} d t \\
& =5 \arctan (t)-2 \arcsin (t)+\sqrt{2} t+C
\end{aligned}
$$

Part(b):

$$
\begin{gathered}
\int_{1}^{2}\left[\frac{1}{x}-\frac{2}{x^{3}}\right] d x=\int_{1}^{2} \frac{1}{x} d x-\int_{1}^{2} \frac{2}{x^{3}} d x=\int_{1}^{2} \frac{1}{x} d x-2 \int_{1}^{2} x^{-3} d x=\left.\ln |x|\right|_{1} ^{2}+\left.x^{-2}\right|_{1} ^{2} \\
=\ln (2)-\ln (1)+\frac{1}{2^{2}}-\frac{1}{1^{2}}=\ln (2)-\frac{3}{4}
\end{gathered}
$$

Problem 5

$$
\begin{gathered}
\frac{d}{d x}\left(e^{x-y}\right)=\frac{d}{d x}\left(2 x^{2}-y^{2}\right) \Longrightarrow e^{x-y} \cdot \frac{d}{d x}(x-y)=4 x-2 y \frac{d y}{d x} \Longrightarrow e^{x-y} \cdot\left(1-\frac{d y}{d x}\right)=4 x-2 y \frac{d y}{d x} \\
\Longrightarrow e^{x-y}-e^{x-y} \frac{d y}{d x}=4 x-2 y \frac{d y}{d x} \Longrightarrow 2 y \frac{d y}{d x}-e^{x-y} \frac{d y}{d x}=4 x-e^{x-y} \Longrightarrow \frac{d y}{d x}\left(2 y-e^{x-y}\right)=6 x^{2}-e^{x-y} \\
\Longrightarrow \frac{d y}{d x}=\frac{6 \mathrm{x}^{\wedge} 2-e^{\underline{x-y}}}{2 y-e^{x-y}}
\end{gathered}
$$

Problem 6

Critical numbers are x-values where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ is undefined. So,

$$
f^{\prime}(x)=\left(\frac{x^{2}}{x-1}\right)^{\prime}=\frac{\left(x^{2}\right)^{\prime}(x-1)-x^{2}(x-1)^{\prime}}{(x-1)^{2}}=\frac{2 x(x-1)-x^{2}}{(x-1)^{2}}=\frac{x^{2}-2 x}{(x-1)^{2}}=\frac{x(x-2)}{(x-1)^{2}}
$$

Then $f^{\prime}(x)$ is undefined at $x=1$ and $f^{\prime}(x)=0$ when $x(x-2)=0$ which occurs at $x=0,2$. The critical numbers of $f(x)$ are $x=0,1,2$.

Problem 7

Plug in the known volume and rewrite the volume equation in terms of a single variable h :

$$
V=16 \pi=\pi r^{2} h \Longrightarrow 16=r^{2} h \Longrightarrow \frac{16}{r^{2}}=h
$$

Now we can substitute this in for h in the surface area equation and minimize it by taking the derivative and finding where it's equal to 0 :

$$
\begin{gathered}
S=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r \frac{16}{r^{2}}=2 \pi r^{2}+\frac{32 \pi}{r} \\
S^{\prime}=4 \pi r-\frac{32 \pi}{r^{2}}=0 \Longrightarrow 4 \pi r^{3}-32 \pi=0 \Longrightarrow r^{3}=\frac{32 \pi}{4 \pi} \Longrightarrow r^{3}=8 \Longrightarrow r=2
\end{gathered}
$$

To verify that this occurs at a minimum, make a sign chart or use the second derivative test:

$$
S^{\prime \prime}=4 \pi+\frac{64 \pi}{r^{3}} \Longrightarrow S^{\prime \prime}(2)=4 \pi+\frac{64 \pi}{8}>0
$$

The function S is concave up at $r=2$ so the critical value at $r=2$ must be a minimum. Therefore, the final dimensions are $r=2 \mathbf{m}, h=\frac{16}{2^{2}}=4 \mathbf{m}$, and the minimum amount of material is $S=$ $2 \pi\left(2^{2}\right)+\frac{32 \pi}{2}=24 \pi \mathbf{m}^{2}$.

Problem 8

Let T be the total amount of water released between $7 \mathrm{a} . \mathrm{m} .(t=0)$ and 9:24a.m. $(t=144)$. Then,

$$
\begin{gathered}
T=\int_{0}^{144} r(t) d t=\int_{0}^{144}(100+\sqrt{t}) d t=\left.\left(100 t+\frac{2 t^{3 / 2}}{3}\right)\right|_{0} ^{144}=100(144)+\frac{2 \cdot(144)^{3 / 2}}{3}-\left(100 \cdot 0+\frac{2 \cdot 0^{3 / 2}}{3}\right) \\
=14400+\frac{2 \cdot 12^{3}}{3}-(0)=15552 \text { gallons }
\end{gathered}
$$

Problem 9

The function $f(x)$ has constant slope on $(-\infty, 0)$. Find the slope by using the slope formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-4}{-2-(-1)}=-2$. So, on the graph of $f^{\prime}(x)$, the function is -2 on the interval $(-\infty, 0)$. Also, the slope of $f(x)$ is zero on the interval $(0, \infty)$. So, the graph of $f^{\prime}(x)$ will be 0 on the interval $(0, \infty)$. The slope of the graph of $f(x)$ is also zero at $x=2$ and $x=4$. So, the graph of $f^{\prime}(x)$ has points $(2,0)$ and $(4,0)$. It is also important to note that $f^{\prime}(x)$ is not defined at $x=0$ (because there is a jump) and at $x=6$ (because it is not smooth).

The graph of $f^{\prime}(x)$ between the values of $x=0$ and $x=6$ are roughly sketched based on the slopes of the original function and do not need to be perfect. Since $f(x)$ looks like a cubic polynomial on the interval $(0,6)$, a good guess for $f^{\prime}(x)$ is to draw something that looks quadratic (like a parabola) on $(0,6)$.

Problem 10

For this problem it is important to recognize the integral of $f(t)$ from -5 to x conceptually is the area under the curve of $f(t)$ between -5 and x. Area above the x-axis is positive and area below the x-axis is negative.
$\operatorname{Part}(\mathbf{a}): g(5)$ is the are under the curve $f(t)$ from -5 to 5 . Break the picture up into triangles and calculate the are of each triangle using $A_{\triangle}=\frac{1}{2} \cdot b a s e \cdot h e i g h t$ and giving the areas a positive or negative sign depending on if they're above or below the x-axis. So if $\triangle_{1}, \triangle_{2}, \triangle_{3}$ are the triangles from left to right:

$$
g(5)=-A_{\triangle_{1}}+A_{\triangle_{2}}-A_{\triangle_{3}}=-\frac{1}{2} \cdot 2 \cdot 4+\frac{1}{2} \cdot 4 \cdot 3-\frac{1}{2} \cdot 4 \cdot 2=-4+6-4=-2
$$

Problem 10 (continued)

Part(b): Using the fundemental theorem of calculus:

$$
g^{\prime}(x)=\frac{d}{d x}\left(\int_{-5}^{x} f(t) d t\right)=f(x)
$$

So, $g^{\prime}(2)=f(2)=-1$ from the graph, and $g^{\prime \prime}(2)=f^{\prime}(2)=$ the slope of $f(x)$ at $x=2$ which is -1 .
$\operatorname{Part}(\mathbf{c})$: Similar to above, $g^{\prime}(1)=f(1)=0$ from the graph, and $g^{\prime \prime}(1)=f^{\prime}(1)$ does not exist (DNE) since the derivative is not defined at corners.

Problem 11

Let $f(x)=x^{5 / 3}$ and $a=1$. Then $f^{\prime}(x)=\frac{5}{3} x^{2 / 3}$ and $f(a)=f(1)=1$ and $f^{\prime}(a)=f^{\prime}(1)=\frac{5}{3}$.

By Linear Approximation:

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)=1+\frac{5}{3}(x-1) \Longrightarrow f(1.2) \approx L(1.2)=1+\frac{5}{3}(1.2-1)=\frac{4}{3}
$$

By Differentials:

$$
\begin{gathered}
x=1.2 \Longrightarrow d x=x-a=1.2-1=0.2 \Longrightarrow d y=f^{\prime}(a) d x=\frac{5}{3}(0.2)=1 / 3 \\
\text { Therefore, }(1.2)^{3 / 5} \approx f(a)+d y=1+\frac{1}{3}=\frac{4}{3}
\end{gathered}
$$

Problem 12

Sign chart for $f^{\prime}(x)$:
$f^{\prime}(x)=-\frac{3\left(x^{2}-3\right)}{2\left(x^{2}+1\right)}=0 \Longrightarrow-3\left(x^{2}-3\right)=0 \Longrightarrow x^{2}=3 \Longrightarrow x= \pm \sqrt{3}$ (critical numbers) $f^{\prime}(x)$ has no "bad" numbers where it is undefined.

So, $f(x)$ is decreasing on the intervals $(-\infty,-\sqrt{3}) \cup(\sqrt{3}, \infty)$.
$f(x)$ is increasing on the interval $(-\sqrt{3}, \sqrt{3})$.
$f(x)$ has a local minimum at $x=-\sqrt{3}$ and a local maximum at $x=\sqrt{3}$.

Problem 12 (continued)

Sign chart for $f^{\prime \prime}(x)$:
$f^{\prime \prime}(x)=-\frac{12 x}{\left(x^{2}+1\right)^{2}}=0 \Longrightarrow 12 x=0 \Longrightarrow x=0$ (critical number)
$f^{\prime \prime}(x)$ has no "bad" numbers where it is undefined.

So, $f(x)$ is concave down on the interval $(0, \infty)$.
$f(x)$ is concave up on the interval $(-\infty, 0)$.
$f(x)$ has an inflection point at $x=0$.
Asymptotes: There are no vertical asymptotes. Also, $\lim _{x \rightarrow \infty} f(x)=-\infty$ and $\lim _{x \rightarrow-\infty} f(x)=\infty$, so there are no horizontal asymptotes.

Graph: Putting together all of the information solved above and given in the problem:

