FINAL EXAMINATION, MAT 2010

December 17, 2021
Write your solutions in a blue book. To receive full credit you must show all work. You are allowed to use an approved graphing calculator unless otherwise indicated. Simplify your answers, when possible but use the precise value rather than an approximation when you have a choice. (Example: If the actual answer is π, then write π, not 3.14.) The 12 problems are worth a total of 150 points. The time limit is 2 hours [120 minutes].

Cell phones are strictly prohibited!

1. (10 points) Use the definition of the derivative to differentiate the following function.

$$
f(x)=\frac{3}{3 x-2}
$$

NOTE: No credit will be given if the definition of the derivative is not used.
2. (7 points each) Find the exact value of each of the following limits. Write " ∞," "- - ," or "does not exist" if appropriate. It is particularly important to show your work on this problem. Numerical approximations do not constitute an acceptable solution.
(a) $\lim _{x \rightarrow 2} \frac{\frac{1}{x+4}-\frac{1}{3 x}}{x-2}$
(b) $\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{2}+3}}{x+7}$
(c) $\lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{4}}{x-2}$
3. (7 points each) Differentiate the following functions. Simplify your answer.
(a) $f(x)=\left[\sin \left(3 x^{2}+x\right)\right]^{4}$
(b) $g(x)=\cos (2 x) \ln (x-1)$
4. Evaluate. Simplify your answer.
(a) $\left(7\right.$ points) $\int\left(\frac{5}{t^{2}+1}-\frac{2}{\sqrt{1-t^{2}}}+\sqrt{2}\right) d t$
(b) $\left(8\right.$ points) $\int_{1}^{2}\left[\frac{1}{x}-\frac{2}{x^{3}}\right] d x$
5. (10 points) Find $\frac{d y}{d x}$ for the curve given by the equation

$$
e^{x-y}=2 x^{2}-y^{2}
$$

6. (10 points) Find the critical numbers (if any) of the function $f(x)=\frac{x^{2}}{x-1}$.
7. (10 points) A cylindrical container with a top and bottom is required to have a volume of $16 \pi \mathrm{~m}^{3}$. What is the minimum amount of material (surface area) needed to make such a container?
[For a cylinder with base radius r and height h, the volume is given by $V=\pi r^{2} h$, and the surface area is given by $S=2 \pi r^{2}+2 \pi r h$.]
8. (10 points) The gate of a dam is opened and water is released from the reservoir at a rate of $r(t)=100+\sqrt{t}$ gallons per minute, where t is measured in minutes since the gate has been opened. If the gate is opened at 7 a.m. and is left open until 9:24 a.m., how much water is released during these 144 minutes?
9. (10 points) The graph of a function $f(x)$ is given below. Sketch the graph of the derivative function $f^{\prime}(x)$.

10. (10 points) The graph of a function $f(x)$ is given below. Define a new function $g(x)$ as

$$
g(x)=\int_{-5}^{x} f(t) d t, \quad-5 \leq x \leq 5
$$

(a) (6 points) Find $g(5)$
(b) (2 points) Find $g^{\prime}(2)$ and $g^{\prime \prime}(2)$ (State DNE if a value does not exist).
(c) (2 points) Find $g^{\prime}(1)$ and $g^{\prime \prime}(1)$ (State DNE if a value does not exist).

11. (10 points) Using differntials or linear approximation estimate the value of $(1.2)^{5 / 3}$. Give answer correct to two decimal places.
12. (20 points) Sketch the graph of a single function $f(x)$ which satisfies all of the following conditions. Label all local maxima and minima, intervals of increase and decrease, points of inflection, concavity, and asymptotes.
(i) $f(x)$ is defined for all real numbers
(ii) $f^{\prime}(x)=-\frac{3\left(x^{2}-3\right)}{2\left(x^{2}+1\right)}$
(iii) $f^{\prime \prime}(x)=-\frac{12 x}{\left(x^{2}+1\right)^{2}}$
(iv) $f(0)=0$
(v) $f(3) \approx 3$
(vi) $f(-3) \approx-3$
(vii) $\lim _{x \rightarrow \infty} f(x)=-\infty$
(viii) $\lim _{x \rightarrow-\infty} f(x)=\infty$

