MAT 2010, Fall 2019 Final Exam Solutions

1. (10 points) Use the **definition** of the derivative to differentiate the following function.

$$f(x) = \frac{x}{x+3}$$

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{x+h}{x+h+3} - \frac{x}{x+3}}{h}$$
$$= \lim_{h \to 0} \frac{\frac{(x+h)(x+3)}{(x+h+3)(x+3)} - \frac{x(x+h+3)}{(x+h+3)(x+3)}}{h}$$
$$= \lim_{h \to 0} \frac{\frac{(x+h)(x+3) - x(x+h+3)}{(x+h+3)(x+3)}}{h}$$
$$= \lim_{h \to 0} \left(\frac{(x+h)(x+3) - x(x+h+3)}{(x+h+3)(x+3)} \cdot \frac{1}{h}\right)$$
$$= \lim_{h \to 0} \frac{x^2 + 3x + hx + 3h - x^2 - xh - 3x}{h(x+h+3)(x+3)}$$
$$= \lim_{h \to 0} \frac{3h}{h(x+h+3)(x+3)}$$
$$= \lim_{h \to 0} \frac{3}{(x+h)(x+3)(x+3)}$$
$$= \frac{3}{(x+3)(x+3)}$$
$$= \frac{3}{(x+3)(x+3)}$$

$$f'(x) = \frac{3}{(x+3)^2}$$

2. (7 points each) Find the exact value of each of the following limits. Write " ∞ ", " $-\infty$ ", or "does not exist" if appropriate. It is particularly important to show your work on this problem.

(a)
$$\lim_{x \to 3} \frac{x^3 - 9x}{x^2 - 2x - 3}$$

(b)
$$\lim_{x \to \infty} \frac{3 - 2x^2 + 5x^4}{2x^4 - 5}$$

(c) $\lim_{x \to 0} \frac{\tan(\sqrt{x})}{\sqrt{x}}$

Solution:

(a) Note that, as x approaches 3, $\frac{x^3 - 9x}{x^2 - 2x - 3}$ approaches $\frac{0}{0}$, which is an indeterminate form. Therefore, more work is needed.

$$\lim_{x \to 3} \frac{x^3 - 9x}{x^2 - 2x - 3}$$
$$= \lim_{x \to 3} \frac{x(x^2 - 9)}{(x - 3)(x + 1)}$$
$$= \lim_{x \to 3} \frac{x(x - 3)(x + 3)}{(x - 3)(x + 1)}$$
$$= \lim_{x \to 3} \frac{x(x + 3)}{x + 1}$$
$$= \frac{18}{4} = \frac{9}{2}$$

1.	$x^3 - 9x$	9
$\lim_{x \to 3}$	$\overline{x^2 - 2x - 3}$	$=\overline{2}$

(b) Note that, as x approaches ∞ , $\frac{3-2x^2+5x^4}{2x^4-5}$ approaches $\frac{\infty}{\infty}$, which is an indeterminate form. Therefore, more work is needed.

$$\lim_{x \to \infty} \frac{3 - 2x^2 + 5x^4}{2x^4 - 5}$$

$$= \lim_{x \to \infty} \frac{x^4 \left(\frac{3}{x^4} - \frac{2}{x^2} + 5\right)}{x^4 \left(2 - \frac{5}{x^4}\right)}$$
(via force factoring)
$$= \lim_{x \to \infty} \frac{\frac{3}{x^4} - \frac{2}{x^2} + 5}{2 - \frac{5}{x^4}}$$

$$= \frac{0 - 0 + 5}{2 - 0} = \frac{5}{2}$$

1.	$3 - 2x^2 + 5x^4$	5
$\lim_{x \to \infty}$	$2x^4 - 5$	$=\overline{2}$

(c) Note that, as x approaches 0, $\frac{\tan(\sqrt{x})}{\sqrt{x}}$ approaches $\frac{0}{0}$, which is an indeterminate form. Therefore, more work is needed.

$$\lim_{x \to 0} \frac{\tan(\sqrt{x})}{\sqrt{x}}$$

$$= \lim_{x \to 0} \frac{\sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}}{\frac{1}{2\sqrt{x}}}$$

$$= \lim_{x \to 0} \sec^2(\sqrt{x})$$

$$= \sec^2(0)$$

$$= \frac{1}{\cos^2(0)}$$

$$= \frac{1}{1^2} = 1$$
(by L'Hospital's Rule)

$$\boxed{\lim_{x \to 0} \frac{\tan(\sqrt{x})}{\sqrt{x}} = 1}$$

3. (7 points each) Differentiate the following functions. Simplify your answer.

(a)
$$f(x) = \frac{1 + x^2}{\arctan(x)}$$

(b) $g(x) = [\sec(3x)]^5$

Solution:

(a)

$$f'(x) = \frac{(1+x^2)' \arctan(x) - (\arctan(x))'(1+x^2)}{(\arctan(x))^2}$$
 (by the quotient rule)
$$= \frac{2x \arctan(x) - \frac{1}{1+x^2}(1+x^2)}{(\arctan(x))^2}$$
$$= \frac{2x \arctan(x) - 1}{(\arctan(x))^2}$$

$$f'(x) = \frac{2x \arctan(x) - 1}{(\arctan(x))^2}$$

(b)

$$f'(x) = 5[\sec(3x)]^4 \cdot (\sec(3x))'$$

= 5[sec(3x)]^4 \cdot sec(3x) \tan(3x) \cdot (3x)'
= 5[sec(3x)]^4 \cdot sec(3x) \tan(3x) \cdot 3
= 15[sec(3x)]^4 \cdot sec(3x) \tan(3x)
= 15[sec(3x)]^5 \tan(3x)

 $f'(x) = 15 \sec^5(3x) \tan(3x)$

4. Evaluate. Simplify your answer.

(a) (7 points)
$$\int \sec x \left[\sec x + \tan x \right] dx$$

(b) (8 points) $\int_0^1 \left[3\sqrt{t} - 2e^t \right] dt$

Solution:

(a)

$$\int \sec x \left[\sec x + \tan x \right] dx$$
$$= \int \left(\sec^2 x + \sec x \tan x \right) dx$$
$$= \tan x + \sec x + C$$

 $\int \sec x \Big[\sec x + \tan x \Big] dx = \tan x + \sec x + C$

(by the chain rule) (again by the chain rule)

(b)

$$\int_{0}^{1} \left[3\sqrt{t} - 2e^{t} \right] dt$$
$$= \int_{0}^{1} \left[3t^{\frac{1}{2}} - 2e^{t} \right] dt$$
$$= \left(3 \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - 2e^{t} \right) \Big|_{0}^{1}$$
$$= \left(2t^{\frac{3}{2}} - 2e^{t} \right) \Big|_{0}^{1}$$
$$= \left(2 - 2e \right) - \left(0 - 2 \right) = 4 - 2e$$

 $\int_0^1 \left[3\sqrt{t} - 2e^t \right] dt = 4 - 2e$

5. (10 points) Consider the equation

$$y^4 + xy = x^3 - x + 2$$

(a) Find $\frac{dy}{dx}$.

(b) Find the equation of the tangent line at the point (1,1).

Solution:

(a) We use implicit differentiation here.

$$y^{4} + xy = x^{3} - x + 2$$

$$\Rightarrow \frac{d}{dx}(y^{4} + xy) = \frac{d}{dx}(x^{3} - x + 2)$$

$$\Rightarrow 4y^{3}\frac{dy}{dx} + \frac{d}{dx}(x)y + \frac{d}{dx}(y)x = 3x^{2} - 1$$

$$\Rightarrow 4y^{3}\frac{dy}{dx} + 1y + \frac{dy}{dx}x = 3x^{2} - 1$$

$$\Rightarrow 4y^{3}\frac{dy}{dx} + x\frac{dy}{dx} = 3x^{2} - y - 1$$

$$\Rightarrow \frac{dy}{dx}(4y^{3} + x) = 3x^{2} - y - 1$$

$$\Rightarrow \frac{dy}{dx}(4y^{3} + x) = 3x^{2} - y - 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{3x^{2} - y - 1}{4y^{3} + x}$$

dy	$3x^2 - y - 1$
dx	$4y^3 + x$

(b)

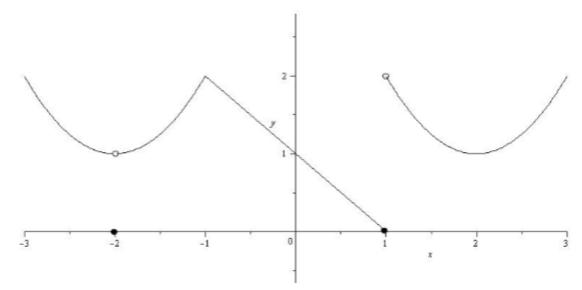
$$\frac{dy}{dx}\Big|_{(1,1)} = \frac{3(1)^2 - 1 - 1}{4(1)^3 + 1} = \frac{1}{5}$$

Hence, $\frac{1}{5}$ is the slope of the tangent line at the point (1, 1). The equation of the tangent line at the point (1, 1) has the form $y = \frac{1}{5}x + b$. We only need to solve for b now.

$$y = \frac{1}{5}x + b$$
$$\Rightarrow 1 = \frac{1}{5}(1) + b$$
$$b = \frac{4}{5}$$

	1	4
y =	$\frac{-x}{5}$ +	$\overline{5}$

6. (10 points) The graph of a function f(x) is given below.



(a) For which values of x in the interval (-3,3) is f not continuous? Give the name of each discontinuity.

(b) For which values of x in the interval (-3, 3) is f not differentiable?

(c) Give values of (i) $\lim_{x \to 1^-} f(x)$ (ii) $\lim_{x \to 1^+} f(x)$ (iii) $\lim_{x \to -1} f(x)$

Solution:

(a) f(-2) = 0, but $\lim_{x \to -2} f(x) = 1$. Since $f(-2) \neq \lim_{x \to -2} f(x)$, there is a discontinuity at x = -2. This is a removable discontinuity.

f(1) = 0, but $\lim_{x \to 1} f(x)$ does not exist since $\lim_{x \to 1^-} f(x) = 0$ and $\lim_{x \to 1^+} f(x) = 2$. Hence there is a discontinuity at x = 1. This is a jump discontinuity.

x = -2 (removable discontinuity) and x = 1 (jump discontinuity)

(b) f is not continuous at x = -2 and x = 1, so f is not differentiable at x = -2 and x = 1. Also, f has a cusp/corner at x = -1, so f is not differentiable at x = -1.

x = -2, x = -1 and x = 1

(c) $\lim_{x \to 1^{-}} f(x) = 0$, $\lim_{x \to 1^{+}} f(x) = 2$ and $\lim_{x \to -1} f(x) = 2$

7. (10 points) On a typical day, a city consumes water at the rate of $r(t) = 100 + 72t - 3t^2$ gallons per hour, where t is the number of hours past midnight. How much water is consumed between 6 A.M. and 9 A.M.?

Solution:

$$\int_{6}^{9} r(t)dt$$
$$= \int_{6}^{9} (100 + 72t - 3t^{2})dt$$
$$= \left(100t + 72 \cdot \frac{t^{2}}{2} - 3 \cdot \frac{t^{3}}{3}\right)\Big|_{6}^{9}$$
$$= \left(100t + 36t^{2} - t^{3}\right)\Big|_{6}^{9}$$
$$= (900 + 2916 - 729) - (600 + 1296 - 216) = 1407$$

1407 gallons of water are consumed between 6 A.M. and 9 A.M.

8. (10 points) The position function of a spring in motion is given by

$$s(t) = 2e^{-1.5t}\sin(2\pi t),$$

where s is measured in centimeters and t in seconds.

(a) Find the velocity of the spring after t seconds.

(b) Find the velocity of the spring after 2 seconds. Give you answer correct to three decimal places. Include proper units.

Solution:

(a)

$$v(t) = s'(t)$$

= $(2e^{-1.5t}\sin(2\pi t))'$
= $2(e^{-1.5t}\sin(2\pi t))'$
= $2((e^{-1.5t})'\sin(2\pi t) + e^{-1.5t}(\sin(2\pi t))')$
= $2(e^{-1.5t} \cdot (-1.5t)'\sin(2\pi t) + e^{-1.5t}\cos(2\pi t) \cdot (2\pi t)')$
= $2(e^{-1.5t} \cdot -1.5\sin(2\pi t) + e^{-1.5t}\cos(2\pi t) 2\pi)$
= $-3e^{-1.5t}\sin(2\pi t) + 4\pi e^{-1.5t}\cos(2\pi t)$

 $v(t) = -3e^{-1.5t}\sin(2\pi t) + 4\pi e^{-1.5t}\cos(2\pi t)$

(b)

$$v(2) = -3e^{-1.5 \cdot 2} \sin(2\pi \cdot 2) + 4\pi e^{-1.5 \cdot 2} \cos(2\pi \cdot 2)$$

= $-3e^{-3} \sin(4\pi) + 4\pi e^{-3} \cos(4\pi)$
= $-3e^{-3} \cdot 0 + 4\pi e^{-3} \cdot 1$
 ≈ 0.626

Approximately 0.626 cm/s

9. (10 points) The base of a triangle is decreasing at a rate of 2 ft/min and the height of the triangle is increasing at the rate of 1.5 ft/min. How fast is the area of the triangle changing when the base of the triangle is 5 ft long and the height is 3 ft?

Solution: Let A represent the triangle's area, b represent its base, and h represent its height. We know that $\frac{db}{dt} = -2$ ft/min, that $\frac{dh}{dt} = 1.5$ ft/min, and that b = 5 ft and h = 3 ft at the moment in question. We want $\frac{dA}{dt}$ at the moment in question.

$$A = \frac{1}{2}bh$$

$$\Rightarrow \frac{d}{dt}(A) = \frac{d}{dt}\left(\frac{1}{2}bh\right)$$

$$\Rightarrow \frac{dA}{dt} = \frac{1}{2}\frac{d}{dt}(bh)$$

$$\Rightarrow \frac{dA}{dt} = \frac{1}{2}\left(\frac{d}{dt}(b)h + \frac{d}{dt}(h)b\right)$$

$$\Rightarrow \frac{dA}{dt} = \frac{1}{2}\left(\frac{db}{dt}h + \frac{dh}{dt}b\right)$$

Then, at the moment in question,

$$\frac{dA}{dt} = \frac{1}{2}(-2\cdot 3 + 1.5\cdot 5)$$
$$= \frac{1}{2}(1.5) = 0.75$$

The area of the triangle is changing at a rate of $0.75~{\rm ft}^2/{\rm min}$

10. (10 points) Find the absolute minimum and absolute maximum values of $f(x) = x - \ln x$ on the interval $\left[\frac{1}{2}, 2\right]$.

Solution: On the interval $\left[\frac{1}{2}, 2\right]$, $f'(x) = 1 - \frac{1}{x}$ has a zero at x = 1 and no values of x at which it is undefined. Therefore, on the interval $\left[\frac{1}{2}, 2\right]$, f(x) has only one critical number at x = 1. Substituting in this critical number and both endpoints of the interval for x in f(x), we get $f\left(\frac{1}{2}\right) = \frac{1}{2} - \ln\left(\frac{1}{2}\right) \approx 1.19$, $f(1) = 1 - \ln(1) = 1$, and $f(2) = 2 - \ln(2) \approx 1.31$.

Absolute minimum value : 1, absolute maximum value : $2 - \ln(2)$

11. (10 points) Using a Riemann sum with n = 4 subintervals, find the overestimate (i.e. upper Riemann sum) of the area of the region bounded above by the function $f(x) = 2 + \sqrt{2x}$ and below by the x-axis on the interval [0, 2].

Solution: Note that the function $f(x) = 2 + \sqrt{2x}$ is strictly increasing on the interval [0, 2], so the upper Riemann sum coincides with the right Riemann sum. Then, we have $\Delta x = \frac{2-0}{4} = \frac{1}{2}$, $c_1 = \frac{1}{2}$, $c_2 = 1$, $c_3 = \frac{3}{2}$, and $c_4 = 2$. Therefore,

Upper Riemann sum =
$$\Delta x (f(c_1) + f(c_2) + f(c_3) + f(c_4))$$

= $\frac{1}{2} \left(f \left(\frac{1}{2} \right) + f(1) + f \left(\frac{3}{2} \right) + f(2) \right)$
= $\frac{1}{2} (3 + 2 + \sqrt{2} + 2 + \sqrt{3} + 4)$
= $\frac{11}{2} + \frac{\sqrt{2} + \sqrt{3}}{2}$

$$\frac{11}{2} + \frac{\sqrt{2} + \sqrt{3}}{2}$$
 un.²

12. (20 points) Sketch the graph of the function f(x) which satisfies the following conditions. Use interval notation list all intervals where the function f is decreasing, increasing, concave up, and concave down. List the x-coordinates of all local maxima and minima, and points of inflection. Show asymptotes with dashed lines and give their equations. Label all important points on the graph.

(i) f(x) is defined for all real numbers

(ii) $f'(x) = (x^2 - 2x - 3)e^x$ (iii) $f''(x) = (x^2 - 5)e^x$ (iv) f(0) = 3(v) $\lim_{x \to \infty} f(x) = \infty$ (vi) $\lim_{x \to -\infty} f(x) = 2$

Solution: The domain of f is \mathbb{R} (as given in the first condition), f has a y-intercept at (0,3) (as given in the fourth condition), and f has a horizontal asymptote at y = 2 (which we deduce from the last condition).

Setting f'(x) equal to zero, we have the following:

$$(x^{2} - 2x - 3)e^{x} = 0$$

$$\Rightarrow x^{2} - 2x - 3 = 0 \text{ or } \underbrace{e^{x} = 0}_{\text{No solution}}$$

$$\Rightarrow (x - 3)(x + 1) = 0$$

$$x = 3, x = -1$$

f'(x) has no values of x at which it is undefined. Therefore, f has two critical numbers at x = 3 and x = -1. The corresponding sign chart of f'(x) is below, where each of -1 and 3 are zeroes.

$$\xleftarrow{+ -1 - 3 +}$$

With this information, we see that f is increasing on $(-\infty, -1) \cup (3, \infty)$ and is decreasing on (-1, 3). We also see that f has a local maximum at x = -1 and a local minimum at x = 3.

Setting f''(x) equal to zero, we have the following:

$$(x^{2} - 5)e^{x} = 0$$

$$\Rightarrow x^{2} - 5 = 0 \text{ or } \underbrace{e^{x} = 0}_{\text{No solution}}$$

$$\Rightarrow x = \pm \sqrt{5}$$

f''(x) has no values of x at which it is undefined. The corresponding sign chart of f''(x) is below, where each of $-\sqrt{5}$ and $\sqrt{5}$ are zeroes.

$$\xleftarrow{+ \operatorname{-sqrt}(5) - \operatorname{sqrt}(5) +}$$

With this information, we see that f is concave up on $(-\infty, -\sqrt{5}) \cup (\sqrt{5}, \infty)$ and is concave down on $(-\sqrt{5}, \sqrt{5})$. We also see that f has inflection points at $x = -\sqrt{5}$ and $x = \sqrt{5}$.

The desired graph of f(x) is shown below.

