Read the directions to each problem carefully. ALL WORK MUST BE SHOWN IN THE PROVIDED BLUE BOOK. Only minimal credit will be awarded for answers without supporting work. Each problem is worth 12 points except where indicated. NO CALCULATORS ALLOWED.

1. Sketch a graph of the function $f(x)=\left\{\begin{array}{clc}x+1 & \text { if } & x \leq-3 \\ 2 & \text { if } & -3<x<0 \\ x^{2}+2 & \text { if } & x \geq 0\end{array}\right.$
2. Find the domain of the function $f(x)=\frac{e^{x}}{\log _{2}\left(x^{2}-9\right)-4}$
3. (8 points each) Let $f(x)=\sqrt{x-5}$ and $g(x)=\frac{3 x}{x-2}$
a) Find and simplify $\frac{(f \circ g)(4)}{(g)(4)}$.
b) Find $g^{-1}\left(\frac{9}{4}\right)$.
4. Consider a rectangular box with a square base. If the base has an area of $100 \mathrm{ft}^{2}$, express the surface area of the entire box, S, as a function of its height h.
5. A small ball is thrown straight up in the air. The height, in feet, of the ball t seconds after being thrown is given by the function $h(t)=-\frac{1}{8} t^{2}+3 t$. What is the maximum height of the ball?
6. Given that -3 is a root of the polynomial $2 x^{3}+8 x^{2}+9 x+9$, find all solutions to the equation $2 x^{3}+8 x^{2}+9 x+9=0$. Express any non-real solutions in the form $a+b i$.
7. Find the average rate of change of the function $f(x)=3 x^{2}+2 x$ from $x=2$ to $x=2+h$. Simplify your answer completely.
8. (14 points) Graph the function $f(x)=x^{4}-2 x^{3}-24 x^{2}$. Label all intercepts and asymptotes.
9. Graph $g(x)=-\log _{2}(x+1)$. Label all intercepts and asymptotes.
10. (4 points each) Simplify each expression completely.
a) $\log _{4} \sqrt{8}$
b) $e^{\ln (10)+\frac{1}{2} \ln (4)}$
11. The number of leaves that have fallen to the ground, t hours after a windstorm begins, increases exponentially according to the function $A(t)=A_{0} e^{r t}$. There are initially 40 leaves on the ground, and after 2 hours there are 60 leaves on the ground. How many leaves will be on the ground after 6 hours?
12. (6 points each) Evaluate each of the following.
a) $\sec \left(\frac{11 \pi}{4}\right)$
b) $\tan \left(-\frac{2 \pi}{3}\right)$
c) $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)$
13. Consider the function $f(x)=3 \cos (2 x)+1$
a) (4 points) State the period and amplitude of the function.
b) (8 points) Graph one period of the function, labeling the highest and lowest points.
14. Given that $\cot (\theta)=\frac{1}{2}$ and $\cos (\theta)<0$, find $\sin (2 \theta)$.
15. Find all primary solutions ($0 \leq \theta<2 \pi$) of the trigonometric equation

$$
2 \sin ^{2}(\theta)+\sin (\theta)-1=0
$$

16. Prove the identity: $\sec (x)-\cos (x)=\tan (x) \cdot \sin (x)$
