MAT 1800 FINAL EXAM

Instructions:

- Please read the directions to each problem carefully.
- Each problem is worth 12 points except where indicated. The Final Exam is worth a total of 200 points.
- Solutions should be written clearly and concisely on blank sheets of paper. All work must be shown to receive full credit. Answers without correct supporting work will receive minimal credit.
- No outside assistance of any kind is allowed. This includes using the internet to find answers, using your notes, having another person look at your work before submission, looking at another person's work before submission, and/or sharing information in any way while completing the exam.
- Calculators are not permitted.
- Please have your camera on and your microphone muted. Webcams are required to be on for the duration of the exam.
- Please direct all questions to me privately in the chat window.
- You will have 2 hours to complete the Final Exam and an additional 15 minutes to upload your work on Canvas.

1. (8 pts each) Let $f(x)=x^{2}+4 x-13$ and $g(x)=\frac{1-5 x}{8 x}$. Find and simplify each of the following.
(a) $\frac{g(1)}{(g \circ f)(2)}$
(b) $g^{-1}(x)$
2. Sketch a graph of the function $g(x)=\left\{\begin{array}{clc}x+5 & \text { if } & x \leq-3 \\ |x+1| & \text { if } & -3<x \leq 2 . \\ \sqrt{x-2} & \text { if } & x>2\end{array}\right.$
3. Find the domain of the function $f(x)=\frac{\sqrt{5 x+7}}{\ln (1-x)}$. State your answer in interval notation.
4. Find the average rate of change of the function $g(x)=\sqrt{3 x}$ from $x=3$ to $x=3+h$ and simplify your answer so that no single factor of h is left in the denominator.
5. Consider the polynomial function $p(x)=x^{3}-19 x-30$. Given that $x=-2$ is a zero of $p(x)$, find all other zeros.
6. Let $f(x)=\frac{x^{2}+2 x}{x^{2}-6 x+8}$.
(a) Find all intercepts and asymptotes for $f(x)$.
(b) Sketch the graph of $f(x)$.

7. Graph $f(x)=-2^{x+1}+8$ using transformations. Label all asymptotes and intercepts.
8. The figure below shows an open box (a box with no top) with a square base. The box has a volume of 10 cubic feet. Express the surface area, S, of the box as a function of the length of a side of its square base, x.

9. (8 pts each) Find the exact value of each expression.
(a) $\log _{4}\left(\frac{\sqrt[3]{2}}{16}\right)$
(b) $10^{\frac{1}{2} \log (36)+\log (9)}$
11.If a sample of a radioactive isotope decays from 400 grams to 50 grams in 6 days, find the half-life of the isotope. Simplify your answer as much as possible.
12.Find the exact value of each trigonometric expression, if it exists.
(a) $\cot \left(\frac{19 \pi}{3}\right)$
(b) $\cos ^{-1}\left(\sin \left(-\frac{\pi}{4}\right)\right)$
10. Given that $\sin u=-\frac{2}{5}, u$ in quadrant III, and $\cos v=\frac{3}{4}, v$ in quadrant IV, find the exact value of $\sin (u+v)$.
11. State the amplitude and period length for the function $f(x)=-3 \cos \left(\frac{2}{3} x\right)$. Graph this function over one complete period, labeling all high points and low points.
12. Verify that the trigonometric equation is an identity.

$$
\frac{\sin x \cos x}{\tan x}=1-\sin ^{2} x
$$

16. Find all primary solutions $(0 \leq x<2 \pi)$ of the equation $2 \sin ^{2}(x)+3 \cos (x)=3$.
