Read the directions to each problem carefully. ALL WORK MUST BE SHOWN. Only minimal credit will be awarded for answers without supporting work. Each question is worth 12 points except where indicated. DO NOT USE A CALCULATOR.

1) If $f(x)=x^{2}+x+1$ and $g(x)=x-4$, find and simplify:
a) $f(x)-g(x)$
b) $(f \circ g)(x)$
c) $(g \circ f)(3)$
2) Let $f(x)=\frac{x-5}{3 x+2}$. Find $f^{-1}(x)$, where $f^{-1}(x)$ is the inverse of the function of f.
3) Sketch a graph of the function $f(x)=\left\{\begin{array}{cll}-x & \text { if } & x \leq 0 \\ 9-x^{2} & \text { if } & 0<x \leq 3 \\ x-3 & \text { if } & x>3\end{array}\right.$
4) A right triangle has one leg that is four times as long as the other leg. Find a function that models the triangle's perimeter, P , in terms of x , the length of the shorter leg.
5) Find the domain of the following functions:
a) $f(x)=\sqrt{7 x-3}$
b) $h(x)=\log \left(x^{2}-16\right)$
6) Find the average rate of change of the function $f(t)=\frac{3}{t}$ from $t=a$ to $t=a+h$ and simplify your answer so that no single factor of h is left in the denominator.
7) (14 points) A ball is thrown straight up in the air. The height, in feet, of the ball t seconds after being thrown is given by the function $h(t)=-3 t^{2}+12 t+6$.
a) What is the maximum height reached by the ball?
b) How many seconds after being thrown does the ball reach this height?
8) Find all zeros of the polynomial $p(x)=x^{3}-3 x^{2}-8 x-10$. Express any non-real zeros in the form a +bi .
9) (16 points) Let $f(x)=\frac{x^{2}-2 x-8}{x^{2}+5 x}$
a) Graph $f(x)$, labeling all intercepts and asymptotes.
b) State the domain and range of $f(x)$.
10) Find the exact value of each expression.
a) $\ln \left(e^{6}\right)$
b) $\log _{3}(\sqrt{27})$
c) $\log _{2}(80)-\log _{2}(5)$
11) The half-life of Strontium-90 is 28 years. How long will it take a 40 mg sample to decay to a mass of 16 mg ?
12) Find all values of x, if any, such that $\log _{8}(x+2)+\log _{8}(3)=\log _{8}(9)+\log _{8}(2 x-11)$.
13) Find the exact value of each.
a) $\sec \left(\frac{7 \pi}{4}\right)$
b) $\cos \left(\frac{-2 \pi}{3}\right)$
c) $\tan \left(\frac{-7 \pi}{6}\right)$
14) (14 points) Graph the function $f(x)=\cos (4 \pi x)-2$ over one complete period. Show each transformation and label all high and low points.
15) Given that $\tan (\theta)=\frac{12}{5}, \theta$ is in Quadrant III, and $\sin (\alpha)=\frac{-\sqrt{10}}{10}, \alpha$ is in Quadrant IV, find and simplify $\sin (\theta-\alpha)$.
16) Find all primary solutions $(0 \leq \theta<2 \pi)$ of $\tan ^{3}(\theta)=\tan (\theta)$.
