Read the directions to each problem carefully. ALL WORK MUST BE SHOWN IN THE PROVIDED BLUE BOOK. Only minimal credit will be awarded for answers without supporting work. Each problem is worth 12 points except where indicated. NO CALCULATORS ALLOWED.

1. Sketch a graph of the function $f(x)=\left\{\begin{array}{cl}-4 & \text { if } x<-2 \\ x-2 & \text { if }-2 \leq x<1 \\ x^{2} & \text { if } x \geq 1\end{array}\right.$
2. Find the domain of the function $f(x)=\frac{\log _{2}\left(x^{2}-25\right)}{x-8}$
3. (8 points each) Let $f(x)=\sqrt[3]{4 x}-3$ and $g(x)=\frac{x+2}{x-2}$
a) Find and simplify $\frac{(g \circ f)(2)}{(f+g)(0)}$.
b) Find $f^{-1}(1)$.
4. A rectangular box with a square base has a volume of $48 \mathrm{ft}^{3}$. Find a function that models its surface area, S, in terms of the length of its base, x.
5. The height, h, in meters of a model rocket being launched off a building is given by the function $h(t)=-16 t^{2}+64 t+145$, where t is the number of seconds after launch. What is the maximum height reached by the rocket?
6. Given that -2 is a root of the polynomial $p(x)=x^{3}-4 x^{2}-2 x+20$, find all solutions to the equation $x^{3}-4 x^{2}-2 x+20=0$. Express any non-real solutions in the form $a+b i$.
7. Find the average rate of change of the function $g(x)=\frac{1}{x^{2}}$ from $x=2$ to $x=2+h$. Simplify your answer completely.
8. (14 points) Graph the function $f(x)=\frac{4 x}{(x-3)^{2}(x+2)}$. Label all intercepts and asymptotes.
9. Graph $g(x)=-3^{x+1}-2$. Label all intercepts and asymptotes.
10. (4 points each) Simplify each expression completely.
a) $\log _{5} \frac{1}{\sqrt[3]{25}}$
b) $e^{2 \ln (10)-\ln (4)}$
11. The number of bacteria in a culture decreases exponentially according to the function $Q(t)=Q_{0} e^{r t}$. Suppose the culture initially contains 80 bacteria and decreases to 60 bacteria after 5 hours. What is the size of the culture after 10 hours?
12. (6 points each) Evaluate each of the following.
a) $\tan \left(\frac{2 \pi}{3}\right)$
b) $\csc \left(\frac{13 \pi}{4}\right)$
c) $\cos ^{-1}\left(\cos \left(-\frac{\pi}{4}\right)\right)$
13. Consider the function $f(x)=-4 \sin (2 x)-1$.
a) (4 points) State the period and amplitude of the function.
b) (8 points) Graph one period of the function, labeling the highest and lowest points.
14. Given that $\tan (\theta)=-\frac{3}{5}$ and $\cos (\theta)>0$, find $\sin \left(\frac{\pi}{4}-\theta\right)$. Simplify your answer completely.
15. Find all primary solutions ($0 \leq \theta<2 \pi$) of the trigonometric equation

$$
\cos ^{2}(x)-2 \cos (x)=0
$$

16. Verify the identity: $\frac{\sec (x) \sin (x)}{\tan (x)+\cot (x)}=\sin ^{2}(x)$
