Instructions:

- Please read the directions to each problem carefully.
- Each problem is worth 12 points except where indicated.
- Solutions should be written clearly and concisely on blank sheets of paper. **All work must be shown to receive full credit. Answers without correct supporting work will receive minimal credit.**
- **No outside assistance of any kind is allowed.** This includes using the internet to find answers, using your notes, having another person look at your work before submission, looking at another person’s work before submission, and/or sharing information in any way while completing the assessment.
- Calculators are not permitted.
- Webcams are required to be on for the duration of the exam.
- You will have 120 minutes to complete the Final Exam and an additional 15 minutes to upload your work on Canvas.

1. (8 pts each) Let \(f(x) = 1 - 7x^2 \) and \(g(x) = \frac{x}{2x+1} \). Find and simplify each of the following.

 (a) \((g \circ f)(x) \)
 (b) \(g^{-1}(x) \)

2. Sketch a graph of the function \(g(x) = \begin{cases} |x - 1| & \text{if } x \leq 2 \\ -(x - 3)^2 & \text{if } 2 < x < 4 \\ -2 & \text{if } x \geq 4 \end{cases} \)

3. Find the domain of the function \(f(x) = \frac{\log_3(5+4x-x^2)}{2x-3} \). State your answer in **interval notation**.

4. Find the average rate of change of the function \(g(x) = \frac{3}{x+1} \) from \(x = a \) to \(x = a + h \) and **simplify your answer** so that no single factor of \(h \) is left in the denominator.

5. Consider the polynomial function \(p(x) = x^4 - 2x^3 + 3x^2 + 6x - 18 \). Given that \(x^2 - 3 \) is a factor of \(p(x) \), find all the zeros of the polynomial.
6. Let \(f(x) = \frac{4(x-2)^2}{x(x+3)}. \)
 (a) Find all intercepts and asymptotes for \(f(x) \).
 (b) Sketch the graph of \(f(x) \).

7. Solve the logarithmic equation: \(\log(x - 1) + \log(5) = 2 - \log(x) \).

8. Graph \(f(x) = 4^{-x^2} - 1 \) using transformations. Label all asymptotes and intercepts.

9. A cardboard box has a square base and a square top with each edge of the squares measuring \(x \) inches. The total length of all 12 edges of the box is 112 inches. Express the volume \(V \) of the box as a function of \(x \).

10. (8 pts each) Find the exact value of each expression.
 (a) \(\log_6(7\sqrt{6}) + \log_6\left(\frac{1}{7}\right) \)
 (b) \(4^{\log_4(24) - 3\log_4(2)} \)

11. The population of a certain rare animal species increases exponentially according to the function \(P(t) = P_0 e^{rt} \), where \(P_0 \) is the initial population, \(t \) is time measured in years, and \(r \) is a constant. If the population increases from 20 to 80 in 4 years, what will the population be in another 2 years? **Simplify** your answer as much as possible.

12. Find the exact value of each trigonometric function at the given real number if it exists.
 (a) \(\sin\left(-\frac{17\pi}{6}\right) \)
 (b) \(\tan^{-1}(\cos(\pi)) \)

13. Given that \(\csc \theta = 3 \) and \(\cos \theta < 0 \), find the exact value of \(\cos\left(\frac{4\pi}{3} - \theta\right) \).
14. State the amplitude and period length for the function $f(x) = 2\sin\left(\frac{1}{3} \pi x \right) - 1$. Graph this function over one complete period, labeling all high points and low points.

15. Verify that the trigonometric equation is an identity.

$$\sin x = (1 - \cos x)(\csc x + \cot x)$$

16. Find all primary solutions ($0 \leq x < 2\pi$) of the equation: $\cos(2x) + \sin(x) = 1$.