18002015091

MAT 1800 FINAL EXAM

Read the directions to each problem carefully. **ALL WORK MUST BE SHOWN IN THE PROVIDED BLUE BOOK.** Only minimal credit will be awarded for answers without supporting work. Each problem is worth 10 points. **DO NOT USE A CALCULATOR.**

- 1. Let $f(x) = \frac{9}{6x x^2}$. Find all the values of x, if any exist, such that f(x) < 1. State your answer in interval notation.
- 2. Sketch a graph of the function $h(x) = \begin{cases} -5 & \text{if } x \le -2 \\ |2-x| & \text{if } -2 < x \le 3 \\ \sqrt{1+x} & \text{if } x > 3 \end{cases}$
- 3. Let $f(x) = \frac{1}{5+x}$ and $g(x) = \frac{1}{x}$. Find and simplify each of the following.

(a)
$$\frac{5 \cdot f(5)}{(g \circ f)(5)}$$
 (b) $(f \circ f)(x)$

- 4. Let $f(x) = 7(e^{4x}) 10$. Find $f^{-1}(4)$, where f^{-1} is the inverse function of f.
- 5. Find the domain of the function $f(x) = \frac{\log_8(-6x) |x|}{\sqrt{x+5} 1}$. State your answer in interval notation.
- 6. Find a polynomial p(x) of degree 4 with integer coefficients that has -1 as its only real zero, has 2i as a zero, and has a constant term of 8.
- 7. Let $r(x) = \sqrt{3x}$. Find the average rate of change of r(x) from x = a to x = a + h and simplify your answer so that no single factor of h is left in the denominator.
- 8. Consider the polynomial function $p(x) = x^4 + 2x^3 + 2x^2 + 14x 35$.
 - (a) List all the possible rational zeros of p(x). (You do **NOT** need to check if any of them work.) (b) Given that $x^2 + 7$ is a factor of p(x), find all the zeros of the polynomial.
- 9. Graph the function $f(x) = \frac{3(x-2)^2}{(3x-4)(x+1)}$, labeling all intercepts and asymptotes.
- **10.** Solve the logarithmic equation $2\log(\sqrt{1-x}) = 2 \log(-5x)$.

11. Graph the function $s(x) = 3 - (\frac{1}{4})^{x-2}$, labeling all asymptotes and **at least one point**.

- **12.** A movie theater holds 1000 people. With the ticket price at \$8 during the week, the attendance at the theater has been 200 people. A market survey indicates that for every dollar the ticket price is lowered, attendance increases by 50.
 - (a) Find a function that models the revenue R in terms of the ticket price x.
 - (b) What ticket price will maximize the revenue?
- 13. Find the exact value of each expression.
 - (a) $\ln(10^{-2\log(e^8)})$ (b) $\log_9\left(\frac{4\sqrt{3}}{\sqrt[3]{81}}\right)$
- 14. A bacteria culture grows exponentially according to the function $P(t) = P_0 e^{kt}$. If the culture begins with 3600 bacteria and triples every 25 minutes, how long will it take for the culture to reach 4200 bacteria. Simplify your answer as much as possible.
- 15. Find the exact value of each trigonometric function at the given real number, if it exists.

(a)
$$\cos\left(\frac{7\pi}{6}\right)$$
 (b) $\tan\left(-\frac{8\pi}{3}\right)$

16. Find the exact value of each expression, if it exists.

(a)
$$\tan^{-1}\left(\sin\left(\frac{7\pi}{2}\right)\right)$$
 (b) $\sec\left(\sin^{-1}\left(\frac{9}{13}\right)\right)$

- **17.** Given that $\tan \theta = -\sqrt{3}$ with θ in Quadrant II and $\cos \phi = \frac{4\sqrt{2}}{9}$ with ϕ in Quadrant IV, find the exact value of $\sin(\theta \phi)$.
- **18.** State the amplitude and period length of the function $f(x) = 3 \cos\left(\pi x \frac{\pi}{2}\right)$ and then graph one complete period. Be sure to label the highest and lowest points on the graph.
- **19.** Verify that the trigonometric equation is an identity.

$$\frac{1-\cos x}{\sin x} + \frac{\sin x}{1-\cos x} = 2\csc x$$

20. Find all primary solutions (i.e. $0 \le x < 2\pi$) of the equation $\tan(\theta) = \sin(2\theta)$.