Biology 1050 – Introduction to Life Fall 2019, 3 Credits

Instructor: Dr. Karen Myhr

Office Hours for Dr. Myhr: STEM Commons in the Kresge Library across from the Student Center, or Rm 2113 Biological Sciences Building by appointment (see page 2 for details)

E-mail: <u>kmyhr@wayne.edu</u>

Office Phone: 313-577-1504 (usually voicemail to my email, so it is faster to email directly)

Course website: canvas.wayne.edu

Lecture: 10:30 am to 11:20 pm Mondays, Wednesdays and Fridays in 146 DeRoy

Objectives: The overall goal of the course is for you to demonstrate an understanding of basic biology from molecules to ecology and evolution, as stated in learning objective 4. This goal depends on your acquiring the skills necessary for you to learn biology effectively, as stated in learning objectives 1-3.

<u>Learning Objective 1</u> is that you set a goal, and a strategy to meet your goal at the beginning of the semester, and reevaluate your goal & strategy after each exam.

<u>Learning Objective 2</u> is that you use the tools & resources for this course, including learning communities, homework assignments, lectures, textbook, Bio 1050 study room and the academic success center, to help you achieve your goals.

<u>Learning Objective 3</u> is that you assess your own learning to evaluate how to improve by using the assessment tools in the homework three times per week.

<u>Learning Objective 4</u> is that by applying the first three objectives in the context of biology throughout the semester, you will be able to demonstrate that you are an educated consumer, patient and voter in issues related to biology, and you are able to succeed in biology courses that you enroll in later.

To assist you with these learning objectives, the course includes online homework and class participation via activities including clickers (see below). You also are in a learning community to support you during lecture and an extra expected hour of instruction.

Textbook: Biology: Concepts & Connections (Ninth Edition, with the red panda cover) by Taylor, Simon, Dickey, Hogan, and Reece

<u>Access</u> to the textbook (any format) is <u>required</u> for success in this course. Copies of the textbook are available in the STEM Commons and on reserve in the undergraduate library (ask at the front desk). Excellent digital materials and MasteringBiology come with the eBook and are <u>highly recommended</u>.

Clickers: We will be using clickers this semester to enhance your experience of the course. Clickers are remote control like devices that allow you to answer questions in class and see how the class answered. Students like clickers because they enable them to participate actively in class, get feedback, and improve learning by engaging with the content. You are <u>required</u> to have an iClicker2. See Canvas for more information on buying clickers.

RESOURCES FOR SUCCESS

- **Canvas:** Our course Canvas site (canvas.wayne.edu) includes the syllabus, FAQs, announcements, required homework and quizzes, study tools, study guides team areas, lecture slides and recordings, and a Discussions area. Check Canvas once every business day of the semester. **You will need internet access to keep up in class and submit your homework and quizzes.** If your home access is not good, you will need to plan time on campus to use the computers in the library, or somewhere else with access.
- **Homework and Quizzes:** The **required** homework and quizzes will be free in Canvas. The purpose of the homework and quizzes is to increase your success by helping you come to class prepared and assess your learning. There will be a lecture-preparation assignment due before each lecture and quiz at least once a week.
- **Canvas Discussions:** For questions that might also benefit other students, please post to Discussions in Canvas, so everyone can help each other and see the answers. You will get information faster this way because an answer your question may already be posted, and classmates may answer faster than I can.
- Lecture Recordings: The lectures usually will be recorded and posted in Canvas under Echo360 Recordings. You also are welcome to record lectures for your personal use. Audio or video recordings or pictures are to be used only for the student's personal instructional use. Such recordings are not intended for a wider public audience, such as postings to the internet or sharing with others. If you take pictures, please disable your flash because flashes are very distracting. I will post the powerpoint files in Canvas before lecture without the clicker question and activities.
- **Technical Support:** I can help with course-specific Canvas problems (on the Discussions board), but not system issues. If you have problems with the general Canvas system or email, please contact Computing & Information Technology (C&IT) at (313)577-4778 or <u>helpdesk@wayne.edu</u>.
- **Office Hours:** Office hours are a good time get help with your questions on the material from the course or issues that require discussion or are specific to you, such as concerns about the course, study strategies, grade problems, special needs or career issues.

Dr. Myhr's office hours are: Tuesdays from 1:30 pm to 3:30 pm in the STEM Commons and By Appointment in my office (Room 2113 Biological Sciences Building)

I will have drop-in hours in the STEM Commons for two hours a week. This is when I hang out and talk to any students who show up. You can come for part of all of the time, no appointment necessary. You can come alone or bring classmates. This time is great for reviewing for exams, going over any concept or skill for the course, or working through homework or quiz questions. We can also talk about careers, majors and opportunities to get involved on campus.

Sometimes students also need to talk to me individually for paperwork or private issues, and it has not been working to have one hour set aside per week with other appointments scheduled by email. Students tell me they want to be able to easily schedule short, individual appointments. This semester we will be trying a new system to make it easier for us to schedule this way.

I will offer short individual appointments scheduled on request. You will request an appointment through a link in our Canvas site. You will tell me how long of an appointment you think you need (10, 15 or 20 minutes), and three times you could meet. I will be notified of your request; will pick a time; and will make a set of appointments in Canvas during that time. All of my students will be notified of the newly available appointments, unless they have changed their Canvas settings from the defaults. You or other students will be able to claim an appointment (or cancel an appointment) within Canvas. The idea is that if one student wants an appointment at a certain time, others may too. This will allow us to set up and have appointments efficiently with the most flexibility for students' busy schedules.

Email: Email works for questions that do **not** require interactive discussion and are not appropriate to post to the whole class on the Discussions board. For example, if you will miss class because you are a student athlete, are part of another WSU program, have a court date, or have jury duty, please email me the dates involved and documentation. Include whether the dates include an exam or not.

LEARNING COMMUNITY SUPPORT

- **Peer Mentors:** You have a <u>free</u> learning community of classmates and a peer mentor that meets once a week (also known as small group meetings, team meetings or discussions) and sits together in lecture. This community is a resource for your success in this course and at WSU. Our data shows the learning community has increased the pass rate in the class by about 15%, but it will only work for you if you participate.
- Your Learning Community: The members of your learning community are another resource. Support each other in your mutual success by asking for help when you need it and sharing your strategies for success.
- **STEM Commons:** Your peer mentors are available in the <u>STEM Commons</u>. Ask your mentors about the material, study skills, research experiences, how to succeed at WSU. You also will have your weekly team meeting in the Commons. Feel free to talk to any peer mentor there, not just your own. The Commons is also great for independent small group study. The Commons is located in Kresge Library across Gullen Mall from the Student Center; and will be open from 8 am to 9 pm Mondays to Thursdays, and 9 am to 5 pm Fridays.

WAYNE STATE UNIVERSITY SUPPORT

Academic Success Center: Get <u>free</u> individual **tutoring** and group **workshops** in the Academic Success Center. You can also make a free appointment with a learning specialist to design study strategies just for you. See <u>success.wayne.edu/</u> for more.

Multicultural Student Engagement (OMSE) omse.wayne.edu. Rm 799, Student Center

Counseling and Psychological Services (CAPS) It is quite common for college students to experience mental health challenges, such as stress, anxiety and depression, that interfere with academic performance and negatively impact daily life. Help is available for any currently enrolled WSU student who is struggling with a mental health difficulty caps.wayne.edu Rm 522 Student Center 313 577-3398. See the FAQs for additional tips on managing anxiety.

COURSE STRUCTURE

Exams: The four unit exams will each be worth 100 points. Your lowest unit exam score will be dropped. The cumulative final will be worth 150 points, for a total of 450 exam points. Exams will consist of multiple-choice questions.

The lowest unit exam score is automatically dropped to accommodate personal reasons that may arise to miss an exam. You do not need to explain or submit an excuse. I assume if you miss an exam you have a good reason. There are no alternative dates or times to take or make-up unit exams. The final exam <u>cannot</u> be dropped.

All exams will be in the regular lecture room. Unit exams are during lecture as indicated in the schedule at the end of the syllabus and in Canvas. Rules and procedures for exams will be explained before exams and must be followed for all exams.

Quizzes: To help you prepare for the exams, the quizzes are my old exam questions. Due dates for the quizzes will be posted in Canvas. Weekly quizzes will usually be due on Mondays and cumulative quizzes right before the exams.

The quizzes will help you with the study and self-assess steps of the study cycle (See Canvas). The quizzes are open book. You are encouraged to get help from classmates and peer mentors. There are unlimited attempts. The best attempt before the deadline counts for your grade. Although you can get help, you must answer the questions yourself. Assess how well you are learning the material. Most questions indicate which learning objective(s) it addresses. If you miss a question, study the materials listed for that objective in the back of the syllabus. You are ready for the exam when you can earn 90% or better every time you take the quiz, can describe why each wrong answer is wrong, **and** can complete all the related learning objectives from memory.

Homework: You will earn up to 75 points from lecture preparation homework assignments in Canvas. The purpose of lecture preparation homework is to learn effectively and efficiently. Before lecture you should read through the questions, then read the assigned reading. Do any activities for the linked learning objectives, like watching the excellent BioFlix animations that come with your book, or working the interactive powerpoint presentations posted in Canvas. After you have previewed, answer the questions first using what you learned, then looking up anything you need to. You will benefit most if you can answer the lecture preparation questions from memory before lecture, but this is not always possible. Make a note of any questions you have trouble with, so you can get the answer before the end of lecture. If you still don't know, ask a peer mentor.

Like the weekly quizzes, the lecture preparation assignments are to help you learn. You will have unlimited attempts. The best attempt before the deadline will count. You are encouraged to seek help on the homework and help others in person or in Discussions in Canvas. You must submit your own answers. Lecture preparation homework will be available about a week before the due date to accommodate busy schedules.

Homework assignments will be one or two points each and due 15 minutes before every lecture, with an extension until September 6 as we get started. Homework points will be capped at a total of 75 possible points. Students who accumulate more than 75 homework points will earn 75 homework points, not more. The points are capped at 75

instead of having make-up opportunities for missed homework for any reason, including technical failures or personal reasons for missing an assignment. This way you do not need to explain or provide an excuse for a missed assignment. I assume you have a good reason, and you can still earn a perfect score.

Clickers: We will be using the IClicker2 system, which enables active participation of every student in lecture classes. You need to buy an IClicker2 and start to use it **right away**. You must register it in Canvas under i>clicker registration **before exam 1**. Use your clicker as soon as you get one. If you get a new clicker, **add** its number to your old clicker number in Canvas as soon as possible.

There will be up to 30 points for participating in class with your IClicker2. There will be at least 39 opportunities to earn the 30 points (1 point in each of the 39 lectures that are not exams, starting on Wednesday, 8/28/19). You will earn one point every day that you answer at least half of the clicker questions. You do not have to answer correctly to earn the point because class is a learning opportunity, not an evaluation of final learning for a grade. Do your best to be correct so you can learn as much as possible during class.

Clicker points are capped at 30 points to accommodate occasional missed points for any reason, including illness, personal events, not having your clicker, dead batteries or technical failures. This way you do not need to explain or provide an excuse for a missed class or clicker. Students who accumulate more than 30 clicker points will earn 30 clicker points, not more. If there is a <u>long-term</u> clicker problem, please email kmyhr@wayne.edu and explain the situation, or show me in class.

You may not let anyone else use your clicker. Using someone else's clicker in lecture or having someone else use your clicker is a violation of the student code of conduct, and may result in penalties from losing all the clicker points for the unit or semester to expulsion from the university. Even just having someone else's clicker when they are not sitting right there is a violation.

LC: You have a learning community (LC) for support. From past data, engaging actively in the learning community will increase your <u>exam</u> grades. You will earn up to 10 points for participating in your Learning Community weekly meetings. You will only earn credit for attending the meetings of the learning community you are officially registered for in Canvas, not other teams' meetings. There will be 13 meetings with an opportunity to earn one point each. To accommodate occasional missed days, points are capped at 10 points. Learning Communities will meet starting August 28. You will start to earn points on September 4.

Grades:	Unit Exams 1-4 (100 points each)	400 points
	Drop one lowest unit exam	-100
	Final exam	150
	Homework	75
	Classroom Participation (clickers)	30
	Quizzes	35
	Learning Community Team Meetings	10
	Total	600 points

Grading Policy:	Grades will be calculated on the following	scale:
-----------------	--	--------

<u> </u>					0		
А	92.5-100%	В	82.5-87.4%	С	72.5-77.4%	D	62.5-67.4%
A-	90.0-92.4%	B-	80.0-82.4%	C-	70.0-72.4%	D-	60.0-62.4%
B+	87.5-89.9%	C+	77.5-79.9%	D+	67.5-69.9%	F	0-59.9%

I do not curve grades. Everyone can earn an A, if they perform well. I do not offer any extra credit, except for participation in the Halloween parade. Instead, I offer many ways to help you succeed throughout the semester.

Grade Calculation Example 1

Item	Raw	Maximum Possible	Towards Grade	
Exam 1	85	100	85	The lowest unit exam was 0 of 100
Exam 2	0	100	0 🔸	because this student missed the exam,
Exam 3	82	100	82	so this grade adds zero to the total.
Exam 4	95	100	95	
Final Exam	133	150	133	I his student missed points, but earned more
Homework	Homework8175Clickers3230		75	than the cap for nomework, clicker participation
Clickers			30	student earned a perfect score in each
Quizzes	38	35	35	category but not more
LC Points	12	10	10	category, but not more.
Total			545 (A-,	
			90.8%)	

Grade Calculation Example 2

Item	Raw	Maximum	Towards
		Possible	Grade
Exam 1	90	100	90
Exam 2	82	100	0 🖌
Exam 3	92	100	92
Exam 4	95	100	95
Final Exam	120	150	120 🖌
Homework	73	75	73
Clickers	29	30	29
Quizzes	34	35	34
LC Points	9	10	9
Total			536 (B+,
			89.3%)

The lowest **unit** exam was 82 of 100, so this grade adds zero to the total.

Even though the final exam is the lowest exam score by percent (120/150 = 80%), **the final** exam cannot be dropped.

This student earned less than the cap for homework, clicker participation, quizzes, and LC points. The total points earned counted towards the grade.

General Policies:

1) Email: You must email me from your WSU email account of Canvas because the WSU email system blocks some email from other addresses, and to comply with privacy laws. Communicating effectively is important for your success at WSU and beyond. I expect emails to be in a professional style, with a subject that includes what the issue is, a proper greeting, e.g. "Dear Dr. Myhr," a proper salutation, e.g. "Sincerely, Chris Smith," correct punctuation, and no texting abbreviations. If I cannot figure out what you need, I cannot help you. These habits will help you succeed at Wayne State and beyond.

2) To request unit exam accommodations for civic duties (jury duty, court dates, or military service), WSU travel, religious holiday conflicts, etc., email kmyhr@wayne.edu as soon as possible with an explanation of your request and documentation.

If you have a conflict with the final exam time **as defined by the rules of the University** (wayne.edu/registrar/pdfs/final_exam_schedule_fall_2019.pdf), please notify me as soon as possible, and at the latest by 12/4/2019. Exceptions are not made for personal travel plans, even if it is for specific important events like weddings.

3) If you have a documented disability that requires accommodations, you will need to register with Student Disability Services for coordination of your academic accommodations. The Student Disability Services (SDS) office is located at 1600 David Adamany Undergraduate Library in the Student Academic Success Services department. The SDS telephone number is 313-577-1851 or 313-202-4216 for videophone use. Once you have met with your disability specialist, I will be glad to meet with you **privately during my office hours** to discuss your accommodations. If your disability requires specific seating in the lecture hall, please email me as soon as possible so I can accommodate your needs before the first day of class. Student Disability Services' mission is to assist the university in creating an accessible community where students with disabilities have an equal opportunity to fully participate in their educational experience at Wayne State University. You can learn more about the disability office at <u>www.studentdisability.wayne.edu</u>.

To register with Student Disability Services, complete the online registration form at: https://wayne-accommodate.symplicity.com/public_accommodation/

4) University closures will be publicized through:

- the University Newsline (313) 577-5345,
- WSU Homepage (www.wayne.edu),
- WDET-FM (Public Radio 101.9) and by other local radio and television stations.

You should set up your **WSU Broadcast Messaging settings in Academica** so you get notices the way that works best for you.

If a unit exam is scheduled on a day when the University or lecture room is officially closed during class, the exam will be held during the next scheduled meeting of lecture that occurs when the University and room are open, or as indicated on the class Canvas site.

5) Only students registered for the course are allowed in the lecture room. Children are **not an exception**. They are adorable, but they are a distraction to other students. An exception is that you are welcome to host people who are considering enrolling at Wayne State and would like to see a class. Please let Dr. Myhr know if you would like to bring a guest.

6) Professional and respectful behavior is expected in all parts of this course. You are encouraged to discuss differences of opinion with each other respectfully. Students who do not respect others will be asked to leave, and will lose any points for that day. There are hundreds of students in the class in addition to you. Please balance your own needs with those of the class. This includes arriving on time. In the rare event that you must be late, please wait in the back until there is a break, then join your team.

7) I do not write letters of recommendation for students who I only know through a lecture course. I need to be able to tell a first-hand story about you that will help you get a position. Consider getting involved in more than classes at Wayne State to get strong letters of recommendation.

8) **Withdrawing:** I encourage you to get help instead of withdrawing. See pages 2 and 3 to find help that meets your needs, so you can save money and graduate sooner. If you need to withdraw, see the website for the Office of the Registrar for details reg.wayne.edu/withdrawing-from-a-course If you withdraw from the course you will receive a WP if you have greater than 60% of the points possible at the time of your request on exams, class participation, quizzes, and homework; or a WF if you have less than 60% of the points possible at the time of your request. No exams or other grades are dropped or replaced in this calculation.

9) Academic Dishonesty

Academic misconduct is any activity that tends to compromise the academic integrity of the institution or undermine the education process. Examples of academic misconduct include:

- **Plagiarism:** To take and use another's words or ideas as your own without appropriate referencing or citation.
- **Cheating:** Intentionally using or attempting to use or intentionally providing unauthorized materials, information or assistance in any academic exercise. This includes copying from another student's test paper, allowing another student to copy from your test, using unauthorized material during an exam and submitting a term paper for a current class that has been submitted in a past class without appropriate permission.
- **Fabrication:** Intentional or unauthorized falsification or invention of any information or citation, such as knowingly attributing citations to the wrong source or listing a fake reference in the paper or bibliography.
- **Other:** Selling, buying or stealing all or part of a test or term paper, unauthorized use of resources, enlisting in the assistance of a substitute when taking exams, destroying another's work, threatening or exploiting students or instructors, or any other violation of course rules as contained in the course syllabus or other written information.

Such activity may result in failure of a specific assignment, an entire course, or, if flagrant, dismissal from Wayne State University. https://doso.wayne.edu/conduct/academic-misconduct/

I encourage you to work with other students on homework. This is not a cheating, but you need to enter your own answers to earn credit fairly, and to have the homework help you learn and earn exam points. Note that no electronics are NOT allowed on your person during an exam. This means all electronics, including all watches, must be in a bag away from you during the exam.

10) For any and all issues not covered in this syllabus, refer to the "Student Code of Conduct", which can be found at: doso.wayne.edu/conduct/student

Bio1050 Schedule, Fall 2019

If changes to the schedule are necessary they will be announced in class and in Canvas. It is unlikely that an exam date will change, unless there is a University closure. Instead of having exams right at the end of a unit, exams are scheduled later so you have time to learn.

Week	Dates	Activities
0	8/28-9/3	Introductions. Orientation. Tour of the cell BioFlix. Cell Pictionary.
1	9/4-9/10	Start earning credit. Homeostasis and diabetes.
2	9/11-9/17	Exercise physiology: Glucose and gasses. Note taking.
3	9/18-9/24	Exam 1 Review: Student questions, BioBattle, Hot Potato
4	9/25-10/1	Exam Wrapper, Careers, hands-on DNA models
5	10/2-10/8	Hands-on models of replication and transcription
6	10/9-10/15	Hands-on models of replication, transcription, and translation
7	10/16-10/22	Exam 2 Review: Modeling gene expression. Student questions.
8	10/23-10/29	Exam 2 Wrapper, Hands-on models of mitosis
9	10/30-11/5	Hands-on models of meiosis. Make final exam study plans.
10	11/6-11/12	Exam 3 Review: Compare mitosis to meiosis
11	11/13-11/19	Exam wrapper. Connecting meiosis and fertilization to inheritance.
	11/25	Make-up meeting for Monday Teams – student questions and non- Mendelian inheritance problem solving
12	11/26-12/2	Applied biology: Ethics & policy discussions (genome editing; and one of food laws, antibiotic use, or growth hormone replacement)
13	12/3-12/9	Aquatic Ecology: Water in Michigan. Exam 4 & Final exam review.

Learning Community Weekly Team Meeting Schedule

Notes on scheduling: Because classes start on a Wednesday, our week generally runs from Wednesday through the following Tuesday.

Monday Teams: Because of the Labor Day holiday, the first meeting of the Monday teams is on September 9. Monday team members are strongly encouraged to meet with a peer mentor in the STEM Commons in the first week of classes to make sure they are set up for the semester and have completed the tours of the cell. The missing meeting from Labor Day is made up on November 25. Monday Teams will do an activity on non-Mendelian problem solving on November 25. Students whose teams do not meet on Monday are encouraged to do the problem-solving activity with any peer mentor in the STEM Commons between November 25 and December 10, 2019.

Unit 1: Diabetes. Lectures August 28 through September 23, 2019, but no classes on Labor Day, September 2. Exam 1 on Wednesday, September 25, 2019.

Note that readings in the textbook are indicated by section of a chapter. Each section starts with the number of the chapter, then the subsection. For example section 1.1 is the first section of Chapter 1 (page 2). BioFlix are excellent animations on your textbook website.

I have made some interactive powerpoint reviews for you (Active ppt in the Lecture column).

Learning Objective	Lecture	Text
1.1) Describe the unity and diversity of life .	1	1.1, 1.2
1.2) Describe diabetes , and compare type I and type II diabetes. UNIT THEME - Diabetes	1, 2, 3, 5	26.8, 26.9,
1.3) Describe the levels of biological organization from molecules to organisms, including examples.	1, 2	1.3, 20.2 BioFlix – tours of cells
1.4) Describe the control systems of animals.	2, 3	26.1
1.5) Describe and apply a strategy for interpreting data on graphs .	2, 3, 6, 7, 8	page 535, Q2; pp 85, 87
 1.6) Quantitatively and qualitatively describe how the endocrine system maintains homeostasis. Explain why homeostasis is important. Identify and diagram the role of the components of homeostasis. Apply the principles of homeostasis to examples, including regulation of blood [glucose]. UNIT THEME - Homeostasis 	2, 3	26.1, 26.8, 26.9, BioFlix - homeostasis
1.7) Compare potential to kinetic energy and give examples.	4	5.10
 1.8) Describe how the organ systems work together to allow you to move. Include the digestive, respiratory, cardiovascular, musculoskeletal, nervous and endocrine systems. UNIT THEME – Organ Systems 	4, 5	6.2, 6.3, 6.4, 21.2, 22.1, 23.1, 23.2, 23.3, 26.8, 30.11
1.9) Describe the major stages and organs of digestion in mammals.	4	21.2, 21.4, 21.10
1.10) Describe the importance and roles of glucose and ATP .	5	3.4, 5.12, 6.4, 30.11
1.11) Describe how glucose, ATP, muscles and the skeleton interact to generate movement .	5	4.16, 30.7, 30.8, 30.10 (BioFlix – muscles)
1.12) Describe the principles of diffusion and why they matter for organisms.	5	5.3
1.23) Diagram and describe how the blood flows through the cardiovascular system . Include the left and right heart , transport blood vessels (systemic arteries and veins, pulmonary arteries and veins) , and capillaries (exchange vessels).		

1.13) Describe, diagram and compare glucose and gas transport through the body, and exchange with tissues and the atmosphere. To integrate the ideas, describe the relative concentrations of oxygen, carbon dioxide and glucose in each type of blood vessel, the alveoli, small intestines and muscles.	5, Active ppt	22.6, 22.9, 22.10, 23.3, 23.7, BioFlix – gas exchange		
UNIT THEME – Organ Systems				
1.14) Describe and diagram how the brain generally controls respiration, heart rate and motor output, and processes sensory input.	6	22.9, 28.1, 28.15, 28.16, (BioFlix – neurons)		
1.15) Describe why cellular membranes are important. Diagram and describe how membrane structures relate to membrane function. Describe how glucose and insulin interact with cellular membranes in health and diabetes.	6, 7	3.8, 3.10, 4.2, 4.4, Ch.5 intro, 5.1, 5.6, 5.8		
1.16) Describe, diagram and give examples of hydrophilic and hydrophobic molecules. Describe how these properties affect permeability across plasma (cellular) membranes.	6	3.8, 3.10		
1.17) Describe, graph and give examples of exergonic and endergonic reactions . Predict whether a reaction is endergonic or exergonic given a description or graph. Graph the energy of the reactants and products given a description of a reaction.	7	2.9, 5.11		
1.18) Describe the significance and process of coupling reactions by transferring energy from one reaction to another. Include examples, such as ATP to ADP and Pi, and the concept of exergonic and endergonic reactions.	7, 8	5.12, 6.3		
1.19) Describe, diagram and graph how enzymes control reactions. Include activation energy and active sites. Describe the importance of enzymes to life.	8	5.13, 5.14		
 1.20) Describe the significance and process of cellular respiration. Describe the reactants and products of cellular respiration in words and an equation. Describe and diagram the four stages of cellular respiration. Describe the high-energy molecules at the beginning and end of each stage. Describe the flow of the carbon atoms through the stages. UNIT THEME – Cellular Respiration 	9, 10 Active ppt	4.13, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.11, Bioflix – cellular respiration		
1.21) Describe where photosynthesis takes place, why it is important and the major reactants and products of each of the two phases.	10, Active ppt	7.2, 7.4, 7.5, 7.12, Bioflix – photosynth		
1.22) Compare cellular respiration when the input is fats versus proteins versus glucose.	10	6.14		
End of material for Exam 1. Exam 1 is during Lecture 12, on Wednesday, September 25.				

Unit 2: The Code of Life. Lectures September 23 through October 14, 2019. Exam 2 on Wednesday, October 23, 2019.

Learning Objective	Lecture	Text
2.1) Give examples of proteins and describe why they are important.	11	Examples from Unit 1 and 3.12
2.2) Draw, label and explain polar and non-polar covalent bonds and describe why they are important for the properties of water and other molecules in biological systems. Compare hydrogen bonds to covalent bonds.	11	2.6, 2.8
2.3) Describe the structure of amino acids. Predict whether an amino acid is hydrophobic or hydrophilic based on its structure. Predict how the sequence of different amino acids will affect the resulting protein structure and function.	11	2.8, 3.13, 3.14, 4.2, 5.1
2.4) Describe what antibodies are, where they come from, their role in the immune system and how immunizations work, including how antibody structure determines antibody function.	11, 13	9.12, 24.3, 24.4, 24.5, 24.6, 24.8, 24.9, 24.10
Lecture 12 is Exam 1. See Unit 1.		
2.5) Describe what a polymer is and how polymers are made and degraded, including three biological examples of polymers.	13	3.3, 3.13, 3.15
2.6) Describe and draw where DNA is in a cell , and why this is important.	13	4.5, 10.6
2.7) Give a general overview of how genetic information is stored and used by living organisms.	13, 14	4.4, 10.6
 2.8) Describe and make a labeled drawing of the structure of deoxyribonucleotides, ribonucleotides, a single DNA nucleic acid (also known as a DNA molecule, DNA strand or DNA polymer) and two strands of DNA (a double helix). UNIT THEME - DNA 	14, 15, DNA models	3.15, 10.2, 10.3
2.9) Describe how the genetic code determines the sequence of amino acids in proteins, and use the codon chart to predict an amino acid sequence from a nucleic acid sequence.	15	10.7, 10.8
2.10) Compare and relate genomes , types of chromosomes , chromosomes , double helix of DNA , genes , alleles , codons and nucleotides . Recognize and represent them in images and schematics. Describe how each varies or not across different species, and across individuals of one species.	15, 16, make a table	8.19, 12.17, 12.18
 2.11) Draw, label and explain the mechanism of transcription, and describe why transcription is important. UNIT THEME - Transcription 	16, model	10.9, BioFlix – protein synthesis

2.12) Draw, label and explain what tRNA is, how it is charged with the right amino acid, and why it is important.	16	10.11		
 2.13) Draw, label and explain the molecules and mechanism of translation. Describe why translation is important. Compare the mechanisms of transcription and translation. UNIT THEME - Translation 	16, 17, model, make a table	10.12, 10.13, 10.14, 10.15, BioFlix – protein synth		
2.14) Compare how proteins are processed depending on where they will be in the organism. Include the mechanism and role of exocytosis .	17, 18	4.6, 4.7, 4.8, 4.9, 5.9		
2.15) Explain why people have different genotypes and phenotypes from each other.	18	10.16		
2.16) Name, describe and solve problems related to what happens to the amino acid sequence when you have a nucleotide substitution that is a point mutation, a point mutation that is a deletion or a point mutation that is an addition.	18	10.16		
2.17) Draw, label and explain how and why DNA is replicated in a cell. Compare DNA replication to transcription.	18, model	10.4, BioFlix – DNA repl.		
2.18) Describe what gene regulation is and why it is important for single-celled organisms and for multicellular organisms.	19, 20	11.1, 11.2		
2.19) Draw, label and explain the major differences between prokaryotes and eukaryotes .	19, 20	4.3, 4.4		
2.20) Draw, label and explain how the lac operon works and why it is important to bacteria and to humans.	19	11.1, 21.4, 21.10		
2.21) Describe what fermentation is and why it is important.	19	6.12		
2.22) Draw, label and explain how gene expression is regulated , comparing eukaryotes to prokaryotes. Predict the relationships between transcription rates, [mRNA], and [protein]. Describe what makes one cell different from another in a multicellular organism.	20	11.1, 11.2, 11.3, Ch 3 intro, 3.16		
UNIT THEME – Gene expression				
2.23) Describe how DNA binding proteins bind to the DNA, and give examples of DNA-binding proteins and where they bind.	20	11.1, 11.3		
2.24) Predict the amount of mRNA if you know the amount of protein, and vice versa. Be able to explain the relationship between variations the amount of mRNA, protein and copies of a gene .	20	11.1, 11.3		
End of material for Exam 2. Exam 2 is during Lecture 24, on Wednesday, October 23.				

Unit 3: Reproduction. Lectures October 16 to November 6. Exam 3 is on November 13, 2019. Updates will be posted to Canvas closer to the start of Unit 3.

Learning Objective	Lecture	Text
3.1) Describe generally how and why prokaryotic and eukaryotic cells need to divide .	20, 21	Ch 8 intro, 8.1, 8.2
3.2) Describe what sister chromatids are and when they form.	21, 22	8.3
3.3) Describe generally what needs to happen during the cell cycle in prokaryotes or eukaryotes.	21, 22	8.4
3.4) Describe what a type of a chromosome is. Describe why the number of types of chromosomes (n, the haploid number) is important for organisms and understanding mitosis and meiosis.	21, 22	8.3, 8.12
3.5) Describe the stages of the mitotic cell cycle including the checkpoints .	22	8.5, 8.6
UNIT THEME – Mitotic cell cycle		
3.6) Describe what affects whether a cell goes through the G1 checkpoint .	22	8.7, 8.8
3.7) Predict what would happen if you add growth factors to cells in a Petri dish. Compare what happens over time to cells with the growth factors to without the growth factors.	22	8.7
3.8) Predict what would happen if you removed cells from a sheet of cells with density-dependent inhibition compared to a sheet without the inhibition.	22	8.7
3.9) Describe and compare how oncogenes and mutated tumor- suppressors affect regulation of the cell cycle.	23	11.10, 11.17
3.10) Describe lifestyle choices that can reduce the risk of cancer .	23	11.18
3.11) Compare the structure and function of the three main types of cytoskeleton .	23	4.16
Lecture 24 is Exam 2. See Unit 2.		•
3.12) Draw, label and explain what is happening to the chromosomes, cytoskeleton and membranes at each stage of mitosis and interphase. UNIT THEME - Mitosis	23, 25	8.3, 8.4, 8.5, 8.6, BioFlix - mitosis
3.13) Compare cytokinesis in plant versus animal cells.	25	8.6
3.14) Draw, label and explain the human life cycle.	26	8.12
3.15) Compare asexual and sexual reproduction , including examples and the relative advantages and disadvantages.	26	27.1, 27.2
3.16) Compare the structure and function of homologous chromosomes to sister chromatids .	26, 27	8.3, 8.11
3.17) Describe the purpose of meiosis .	26, 27	8.12

3.18) Draw, label and explain the structure and function of the phases and events of meiosis , including the chromosomes, membranes and cytoskeleton. Compare meiosis to mitosis .	27, 28	8.12, 8.13, 8.14, BioFlix - meiosis	
UNIT THEME - MEIOSIS			
3.19) Draw, label, explain and compare the structure and function of the parts of the female and reproductive system .	29	27.3, 27.4	
3.20) Draw, label and explain how a sperm cell fertilizes an egg and can result in an implanted human embryo .	29	27.9, 27.15	
3.21) Compare the mechanisms and treatments for bacterial and viral sexually transmitted diseases with three examples for each.	29	27.7	
3.22) Compare the methods, advantages and disadvantages of different types of contraception and birth control .	29	27.8	
3.23) Describe fertilization, pregnancy and childbirth. UNIT THEME - Reproduction	29, 30	27.9, 27.15, 27.16, 27.17	
End of material for Exam 3. Exam 3 is during Lecture 33, on Wednesday, November 13.			

Unit 4: Inheritance, Evolution and Ecosystems. Lectures November 8 through December 9. Unit 4 exam during the University-assigned final exam time, along with cumulative final exam on all four units. Updates will be posted to Canvas closer to the start of Unit 4.

Learning Objective	Lecture	Text	
4.1) Describe how traits are inherited.	30	9.2, 9.3, 9.4	
4.2) Describe how a Mendelian monohybrid cross works. Describe how genotype relates to phenotype in general and using the examples of the seven characters that Mendel studied. Predict genotype and phenotype ratios.	30, 31	9.2, 9.3	
4.3) Describe six types of non-Mendelian inheritance and how non-Mendelian genotypes relate to phenotypes. Compare Mendelian to non-Mendelian inheritance. Solve inheritance problems given phenotypes or genotypes of parents or offspring.	31, 32	9.11, 9.12, 9.13, 9.14, 9.15	
 4.4) Develop problem solving skills by connecting the biology to tools like Punnett squares, and non-Mendelian problem-solving tables; and by practicing predicting an answer, solving the problem systematically and reflecting on the two approaches. UNIT THEME - Inheritance 	32, 34, worksheet	9.2, 9.3, 9.11, 9.12	
Lecture 33 will be exam 3. See Unit 3.			
4.5) Compare artificial selection and natural selection.	34	13.1, 13.6	
 4.6) Describe Darwin's theory of natural selection and how it provides a mechanism for evolution, and how insects and pesticides are an example. UNIT THEME - Evolution 	34	13.6, 13.7, 13.8, 13.9, BioFlix - evolution	
4.7) Describe the evidence for evolution .	34	13.2, 13.3, 13.4, 13.5	
4.8) Describe and calculate allele frequency and phenotype frequency of a population and how these frequencies change .	34, 35	13.10	
4.9) Describe what antibiotic-resistant bacteria are, why they are a concern and what can be done about them.	34	13.16, small group work	
4.10) Describe how sexual reproduction leads to new combinations of alleles in offspring and where new alleles come from.	34, 35	13.8, 13.9 and Ch 9	
4.11) Describe relative biological fitness and how it is related to natural selection.	35	13.13	
4.12) Describe the different definitions of species and when each definition would be most and least useful. Compare a species to a population .	35	14.1, 14.2	
4.13) Describe the different reproductive barriers with examples (if we covered one).	36	14.3	

4.14) Describe the history of how humans have changed allele frequencies to meet our own needs.	36	Ch 31 intro, 31.1	
4.15) Describe how genetic engineering works, including two vectors.	36	12.6, 12.7, 12.8	
4.16) Describe the challenges of gene therapy.	36	12.10	
4.17) Describe the <u>facts</u> regarding the advantages and disadvantages of genetically modified organisms (GMOs). Also consider separately how your <u>values</u> will affect your decisions.	36, 37, 39	12.8, 12.9	
4.18) Describe where the matter of plants comes from.	38	7.4, 32.9	
4.19) Describe soil conservation and management and how organic farming and genetic engineering play a role.	39	32.10, 32.11, 32.12	
4.20) Describe ecosystems and the roles of chemical cycling , energy flow and the organisms in ecosystems.	39	37.14	
4.21) Describe trophic structure , energy budgets , food chains and their energy supply limits	39, 40	37.8, 37.9, 37.15, 37.16, 37.17	
4.22) Describe carbon cycling , as an example of chemical cycling. SEMSETER THEME – The Carbon Cycle	39, 40	37.18, 37.19, 6.1, BioFlix – carbon cycle	
4.23) Describe how human disruptions to the carbon cycle are causing climate change.	39, 40	7.4, 38.3, 38.4	
4.24) Illustrate the aquatic food chain in the Great Lakes ecosystem, and describe the local importance of aquatic ecology .	40, 41	34.6, 34.7	
4.25) List limiting factors to freshwater algae growth.	40, 41	34.7, 37.20, 37.22	
4.26) Describe the perturbations caused by the invasive mussel species in the Great Lakes ecosystem.	40, 41	37.13	
UNIT THEME – Aquatic Ecology			
4.27) Model the scientific process of posing, testing, and rejecting hypotheses.	40, 41	1.8, 1.9	
End of material for Exam 4. Exam 4 is during the final exam time on Wednesday.			

End of material for Exam 4. Exam 4 is during the final exam time on Wednesday, December 11. There also is a cumulative Final Exam on all four units during the final exam time. Exam 4 is delayed until the final exam to give you more time to prepare. Unit 4 questions will be separated from the final exam is so you can drop exam 4, if it is your lowest.

Final exam

See wayne.edu/registrar/pdfs/final_exam_schedule_fall_2019.pdf for the University final exam schedule and final exam policies. If you have a conflict with the final exam time **as defined by the rules of the University**, please notify me as soon as possible, and at the latest by 12/3/2019. Exceptions are not made for personal travel plans, even if it is for specific important events like weddings.