WSU B.A. in Biological Sciences 2019-2020 Assessment Plan

Mission Statement

The mission of the Bachelor of Arts in Biological Sciences is to give students a broad liberal arts education with specialization in biology. It is not recommended for students seeking admission into graduate or medical school..

B.A. in Biological Arts Program Outcomes

Students successfully completing the WSU B.A. in Biological Sciences should be able to:

- Demonstrate an understanding of the following core concepts: evolution; biological structure and function; information flow, exchange, and storage; pathways and transformations of energy and matter; and biological systems
- 2. Have the ability to apply the process of science:
- 3. Demonstrate the ability of quantitative reasoning;
- 4. Use modeling and simulation;
- 5. Tap into the interdisciplinary nature of science;
- 6. Communicate and collaborate with other disciplines;
- 7. Understand the relationship between science and society.

2019-2020 Assessment Learning Outcomes

The learning outcomes for the B.A. in Biological Sciences are currently being revised. For the 2019-20 assessment, the following learning outcomes will be utilized:

- 1. Students will show adequate progress through the curriculum and graduate in four to six years;
- 2. Students will demonstrate an understanding of the core concept of evolution.
- 3. Students will demonstrate mastery of science communication through writing in the biological sciences.

<u>Assessment 1 – Adequate Progress</u>

Learning Outcome

Students will show adequate progress through the curriculum and graduate in four to six years.

Data Sources

For all students graduating with a BA in Biological Sciences between Spring/Summer 2019 and Winter 2020, we used data gathered from the Office of Institutional Research that describes the number of semesters required students to progress from (a) first-time enrollment in Bio 2600 (Cell Biology) to first-time enrollment in Bio 3070 (Genetics); (b) first-time enrollment in Bio 3070 to first-time enrollment in Bio 4200 (Evolution); and (c) first time enrollment in Bio 4200 to graduation.

Data Gathering and Timeline

Data were gathered in May of the assessment year, including students graduating in the Spring/Summer, Fall, and Winter terms.

Data Evaluation

The number of semesters needed to progress among the three courses and graduation for each student during the assessment period will be tabulated, and the percent of students meeting the minimum criteria for each transition will be reported.

Criteria for Acceptable Performance

75% of students graduating with a BA degree in Biological Sciences will complete their degree in ten semesters or less. Moreover, students will meet the following benchmarks:

- (a) 60% of students will successfully progress from BIO 2600 to BIO 3070 in four semesters or less:
- (b) 75% of students will progress from BIO 3070 to BIO 4200 in three semesters or less; and
- (c) 90% of students will progress from BIO 4200 to graduation in two semesters or less.

<u>Assessment 2 – Understanding of the core concept of evolution</u>

Learning Outcome

Students will demonstrate an understanding of the core concept of evolution.

Data Sources

Student final grades from BIO 4200 (Evolution), the current capstone course in the BA degree, will be used as an assessment tool for the 2019-20 assessment year. Future assessments will utilize specific questions from this and other courses as assessment tools to examine students' understanding of the core concept of evolution.

Data Gathering and Timeline

Final grades from Spring/Summer 2019, Fall 2019, and Winter 2020 will be utilized for this assessment.

Data Evaluation

Combining the data from the three semesters of the assessment period, the number of students earning a letter grade of "B-" or higher will be tabulated, and the percent of students meeting this minimum criteria for this learning outcome will be reported.

Criteria for Acceptable Performance

A minimum of 75% of students completing their BA degree in Biological Sciences will earn a minimum letter grade of "B –" in the capstone Evolution course.

<u>Assessment 3 – Mastery of written science communication</u>

Learning Outcome

Students will demonstrate mastery of science communication through writing in the biological sciences.

Data Sources

The undergraduate programs in Biological Sciences require that students successfully complete one of three writing intensive courses, in which they complete multiple writing assignments and drafts designed to encourage students to read and understand the primary literature in biology and to communicate this information in writing. The three writing intensive courses (BIO 4110: Biomedical Technology and Molecular Biology, BIO 4120: Comparative Physiology, and BIO 4130: General Ecology) each require a final term paper assignment that is graded using a common rubric (see attached file). Data for this assessment will include the grade distributions based on the points awarded to each student for each of the three courses offered during the assessment period.

Data Gathering and Timeline

Final rubric scores for the term paper assignment will be collected from the three writing intensive courses offered during the assessment period.

Data Evaluation

Combining the data from the three writing intensive courses, the number of students earning at least 80% of the rubric points (58 of 70 points) will be tabulated, and the percent of students meeting this minimum criterion for this learning outcome will be reported.

Criteria for Acceptable Performance

A minimum of 80% of students completing their BA degree in Biological Sciences will earn a minimum letter grade of "B –" in the capstone Evolution course.

Writing Intensive Courses Term Paper Grading Rubric for BA in Biological Sciences

Pts.	Section	A	В	С	D or F	Article #*
	Introduction	clear,	fairly clear,	excess reader time needed,	not at all clear,	
		well organized,	okay organization,	weak organization,	poor organization,	
of 10		describes significance,	some significance,	weak significance,	poor/no significance,	
		sets up the paper well,	partially sets up paper,	weakly sets up paper,	poor/no set-up of paper,	
		introduces scientific	acceptable introduction	weak introduction to	poor/no introduction to	
		progression well,	to scientific progression,	scientific progression,	scientific progression,	
		professional tone	acceptable tone	unprofessional tone	unprofessional tone	
	Articles:	clear,	somewhat clear,	weak clarity,	not clear,	1 2 3 4
of 5	purpose	convincing	somewhat convincing	weakly convincing	absent or unconvincing	1 2 3 4
	Articles:	clear,	somewhat clear,	marginally clear,	not clear or absent,	1 2 3 4
of 10	approach	flow from purpose	some flow from purpose	weak flow from purpose	no link to purpose	1 2 3 4
	Articles:	clear,	somewhat clear,	excess reader time needed,	not clear,	1 2 3 4
	results	explain results well,	acceptable results,	weak results,	poor/no results,	1 2 3 4
of 10		flow from purpose &	flow somewhat from	flow weakly from purpose	poor flow from purpose	1 2 3 4
		approach	purpose & approach	& approach	& approach	
	Articles:	clear,	somewhat clear,	excess reader time needed,	not clear,	1 2 3 4
	conclusions	strong conclusions,	acceptable conclusions,	weak conclusions,	poor/no conclusions,	1 2 3 4
of 10		flow logically from	flow somewhat logically	flow weakly from results	flow poorly from results	1 2 3 4
		results	from results			
	Transitions	clear,	somewhat clear,	excess reader time needed,	not clear,	1 2 3 4
		connect articles well,	connect articles oaky,	weak article connections,	poor/no connections,	1 2 3 4
of 15		logical	somewhat logical	weak logical flow	poor logical flow	1 2 3 4
	Paper	clear,	somewhat clear,	excess reader time needed,	not clear,	
	Conclusion	summarizes findings,	acceptable summary,	weak summary,	poor/no summary,	
of 5		good significance,	acceptable significance,	weak significance,	poor/no significance,	
		good overview of	acceptable overview of	weak overview of scientific	poor/no overview of	
		scientific progress	scientific progress	progress	scientific progress	
	Overall	pleasure to read,	acceptable to read,	effort to read,	hard to read,	
		well organized,	acceptable organization,	weak organization,	poor organization,	
of 5		correct citations,	acceptable citations,	weak citations,	citations incomplete	
		<2 spelling &	few spelling & grammar	4-5 spelling & grammar	excessive spelling &	
		grammar errors	errors	errors	grammar errors	