Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY

PART I

Friday, January 6, 2023
10:00-12:00

ROOM 245 PHYSICS RESEARCH BUILDING

INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

1. your special ID number that you received from Delores Cowen,
2. the problem number (i.e. Problem 7).

Please make sure your answers are dark and legible.
Do NOT write your name on the cover or anywhere else in the booklet!
$\underline{\text { Problem } 1 \text { (10 points) }}$
A cannonball is fired with velocity v at an angle θ to the horizontal up a steady incline that makes an angle ϕ to the horizontal.
(a) Ignoring air resistance, calculate the horizontal distance D the cannonball travels before hitting the ground. [4 points]
(b) If $\theta=35 \mathrm{deg}$ and $\phi=15 \mathrm{deg}$ and $v=110 \mathrm{~m} / \mathrm{s}$: What is the height of the tallest wall $h_{\text {max }}$ (measured vertically from the incline) you could build on the hill and still have the cannonball clear the top of it, again ignoring air resistance? $\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$ [6 Points]

Problem 2 (10 points)

Consider a body that is confined to move in a vertical plane, the $x-z$ plane, with a gravitational force in the $-\hat{z}$ direction. The body has mass m and moves in the plane subject to the (constant) gravitational force $m g$ and an additional "central" force of the form $f=-A r^{-1 / 2}$, where $r^{2}=x^{2}+z^{2}$. This additional force is thus directed towards the origin. Choose the appropriate generalized coordinates and let the gravitational potential be zero along a horizontal line through the origin $(z=0)$.
(a) Find the Lagrangian equations of motion for the system. [6 points]
(b) Show whether or not angular momentum about the origin is conserved. [4 points].

Problem 3 (10 points)

Suppose a comet has a highly elliptical orbit about the Sun with an orbital period of 86 yr. The eccentricity is $\epsilon=0.8$. Express your answers in Astronomical Units, which is the average distance between Sun and Earth ($\left.1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}\right)$.
(a) Find the length of the semimajor axis. [4 points]
(b) Find the distance of the closest approach r_{p} to the Sun (also called perihelion) and the farthest distance r_{a} (also called aphelion) the comet lies from the Sun. [6 points]

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY

PART II

Friday, January 6, 2023
13:30-15:30

ROOM 245 PHYSICS RESEARCH BUILDING

INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

1. your special ID number that you received from Delores Cowen,
2. the problem number (i.e. Problem 7).

Please make sure your answers are dark and legible.
Do NOT write your name on the cover or anywhere else in the booklet!
$\underline{\text { Problem } 4(10 \text { points) }}$
One half of the region between the plates of a spherical capacitor of inner and outer radii a and b is filled with a linear isotropic dielectric of permittivity ϵ_{1} and the other half has permittivity ϵ_{2}, as shown in the figure. If the inner plate has total charge Q and the outer plate has a total charge $-Q$, find:
(a) the electric displacements D_{1} and D_{2} in the region of ϵ_{1} and ϵ_{2} [4 points]
(b) the electric fields in ϵ_{1} and ϵ_{2} [3 points]
(c) the total capacitance of this system [3 points]

Problem 5 (10 points)
A charge Q is uniformly distributed over the surface of a sphere of radius R. The material inside and outside the sphere has the properties of the vacuum.
(a) Calculate the electrostatic energy in all space. [3 points]
(b) Now, the sphere rotates around an axis through a diameter with constant angular speed ω. Calculate the magnetic field at the center of the sphere. [4 points]
(c) What is the magnetic dipole moment of the rotating sphere? [3 points]

$\underline{\text { Problem } 6(10 \text { points) }}$
Consider a possible solution to Maxwell's equations given by

$$
\begin{equation*}
\vec{A}(\vec{r}, t)=\vec{A}_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)}, \quad \phi(\vec{r}, t)=\phi_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \tag{1}
\end{equation*}
$$

where \vec{A} is the vector potential and ϕ is the scalar potential. Assuming $\vec{A}_{0}, \phi_{0}, \vec{k}$, and ω are constants in space-time.
(a) [2 points] Show that the electric and magnetic fields from the provided scalar and vector potentials are

$$
\begin{aligned}
\vec{E}(\vec{r}, t) & =-i \vec{k} \phi(\vec{r}, t)+i \frac{\omega}{c} \vec{A}(\vec{r}, t) \\
\vec{B}(\vec{r}, t) & =i \vec{k} \times \vec{A}(\vec{r}, t)
\end{aligned}
$$

Individual Maxwell's equations may or may not impose constraints on the constants, \vec{A}_{0}, ϕ_{0}, \vec{k}, and ω in the vector and scalar potentials. Examine each of Maxwell's equations given below and determine the constraints they impose on these constants if any.
(b) $\vec{\nabla} \cdot \vec{B}=0[2$ points]
(c) $\vec{\nabla} \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial t}=0$ [2 points]
(d) $\vec{\nabla} \cdot \vec{E}=0$ [2 points]
(e) $\vec{\nabla} \times \vec{B}-\frac{1}{c} \frac{\partial \vec{E}}{\partial t}=0[2$ points]

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY

PART III

Monday, January 9, 2023
 10:00-12:00

ROOM 245 PHYSICS RESEARCH BUILDING

INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

1. your special ID number that you received from Delores Cowen,
2. the problem number (i.e. Problem 7).

Please make sure your answers are dark and legible.
Do NOT write your name on the cover or anywhere else in the booklet!

Problem 7 (10 points)
The Figure shows a reversible cycle through which 1 mole of a monoatomic ideal gas is taken. The point 'a' corresponds to (V_{0}, P_{0}) and the point ' c ' corresponds to ($2 V_{0}, 2 P_{0}$). Assume that $P_{0}=10^{5} \mathrm{~Pa}$ and $V_{0}=0.05 \mathrm{~m}^{3}$. The molar specific heats, $C_{v}=(3 / 2) R$ and $C_{p}=(5 / 2) R$
(a) Calculate the work done during the cycle [2 points].
(b) Identify the steps where the energy is added as heat and calculate the amount of heat added [2 points].
(c) What is the efficiency of the engine [3 points]?
(d) What is the efficiency of a Carnot engine operating between the highest and lowest temperatures that occur in the cycle [3 points]?

$\underline{\text { Problem } 8 \text { (10 points) }}$
Consider a system of three spins arranged in an equilateral triangle, each spin interacting with the other two. Each spin can only point up or down with the values of $S= \pm 1$, respectively. The energy of the spins in a magnetic field B is described by the Hamiltonian

$$
H=-J\left(S_{1} S_{2}+S_{2} S_{3}+S_{1} S_{3}\right)-F\left(S_{1}+S_{2}+S_{3}\right)
$$

where $F=\mu B$.
(a) Find the partition function for the system [4 points].
(b) Determine the average spin [3 points].
(c) Calculate the average energy [3 points].

Problem 9 (10 points)

A single slit of width, $a=5.5$ micron is illuminated with a light signal containing only two wavelengths, $\lambda_{1}=400 \mathrm{~nm}$ and $\lambda_{2}=500 \mathrm{~nm}$. The lights incident perpendicular on the screen containing the slit.
(a) What is the angular separation between the second order minima of these two wavelengths? [4 pionts]
(b) What is the smallest angle at which two of the resulting minima are superimposed? [3 points]
(c) What is the highest order for which minima for both wavelengths are present in the diffraction pattern? [3 points]
[Useful relation: $a \sin \theta=n \lambda$, where $n=1,2,3, \ldots$]

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY

PART IV

Monday, January 9, 2023
 13:30-15:30

ROOM 245 PHYSICS RESEARCH BUILDING

INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

1. your special ID number that you received from Delores Cowen,
2. the problem number (i.e. Problem 7).

Please make sure your answers are dark and legible.
Do NOT write your name on the cover or anywhere else in the booklet!

Problem 10 (10 points)

A particle of energy E and mass m moves from $-\infty$ towards a potential of the form

$$
V(x)=C(\delta(x-a)+\delta(x+a))
$$

(a) Write the Schroedinger equation for the one-dimensional problem. [1 point]
(b) In view of calculating the transmission coefficient, write the wave solution for the three regions $x<-a,-a<x<a, x>a$. [2 points]
(c) Write the boundary conditions for the wavefunction at the two δ. [4 points]
(d) Calculate the transmission coefficient T for the particle to cross the potential. [3 points]

Problem 11 (10 points)

A 3-dimensional isotropic harmonic oscillator has energy eigenvalues $E_{n}=\hbar \omega(n+3 / 2)$, where $n=0,1,2, \cdots$.
(a) Find the degree of degeneracy D_{2} of the quantum state $n=2$. [4 points]
(b) Find the degree of degeneracy D_{n} of the quantum state n for general n. [6 points]

Problem 12 (10 points)

The ground state of a 1-dimensional harmonic oscillator has the Gaussian form $\psi(x)=$ $C e^{-k^{2} x^{2}}$. The corresponding Hamiltonian is $H_{0}=(1 / 2)\left(p^{2} / m+m \omega^{2} x^{2}\right)$.
(a) Using Schroedinger equation, find k and find the energy of the ground state E_{0}. [4 points] (b) Find the normalization constant C. [1 point] (Hint: $\int_{-\infty}^{\infty} d x e^{-x^{2}}=\sqrt{\pi}$.)
(c) A small defect is introduced in the Hamiltonian, $H_{1}=\lambda|x|$, with λ a constant, so that $H=H_{0}+H_{1}$. Using perturbation theory evaluate the change ΔE to the ground state energy E_{0}. [5 points]

