PART I

Friday, May 6, 2022 10:00 – 12:00 pm

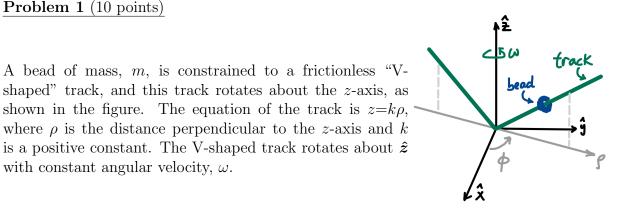
INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

- 1. the **special ID number** that you received from Delores Cowen,
- 2. the **problem number** (*i.e.* Problem 7).

Please make sure your answers are dark and legible.

Problem 1 (10 points)

with constant angular velocity, ω .



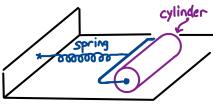
(a) [4 points] Taking the perpendicular distance from the z-axis, ρ , as the variable of interest, write the equation of motion for ρ .

(b) [2 points] Are there any equilibrium points?

(c) [4 points] Show that the equation of motion from part (a) reduces to the equation of motion for a frictionless inclined plane if the track is not being rotated.

Problem 2 (10 points)

A solid cylinder (radius R, mass M with uniform density ρ , length L, volume $\pi R^2 L$) is attached via a spring (massless, spring constant k) to a wall as shown in the figure. The horizontal surface is rough enough that the cylinder can only roll (no slipping).



(a) [4 points] Perform the integral $I = \int r^2 dm$ over the cylinder to show that the moment of inertia of the cylinder for rotations about its symmetry axis is $I = \frac{1}{2}MR^2$.

(b) [4 points] Letting the generalized coordinate be x, the position of the center of the cylinder with respect to its equilibrium position, what is the equation of motion?

(c) [2 points] What is the angular frequency, ω , for small oscillations about the equilibrium position?

Problem 3 (10 points)

A block of mass m is projected upward along an inclined plane that makes an angle θ with the horizontal plane as shown in the figure below. At the block-incline interface both the coefficients of static and kinetic friction have the same value μ . The initial speed of the block at the bottom of the incline is v_0 .

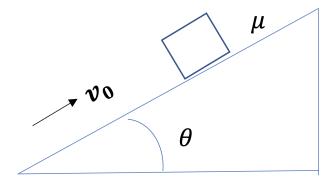
(a) [2 points] Determine, in terms of given quantities, the maximum distance D that the block moves up along the inclined plane and the time, t_{up} , it takes to reach that highest point.

(b) [2 points] Next, the block slides down the ramp to its starting point. What is the time of descent, t_{down} , of the block to the bottom of the ramp?

(c) [2 points] What is the largest value of the angle θ , in terms of given quantities, such that the block stops and stays at its highest point?

(d) [2 points] Now imagine that the block and the inclined plane are frictionless (that is, $\mu=0$). What is the total up-and-down travel time for the block in this frictionless case?

(e) [2 points] What is the relationship between μ and θ if the total travel times are the same for the frictional and the frictionless motions?



PART II

Friday, May 6, 2022 13:30 – 15:30 pm

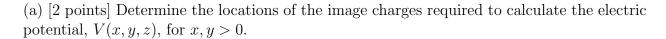
INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

- 1. the **special ID number** that you received from Delores Cowen,
- 2. the **problem number** (*i.e.* Problem 7).

Please make sure your answers are dark and legible.

Problem 4 (10 points)

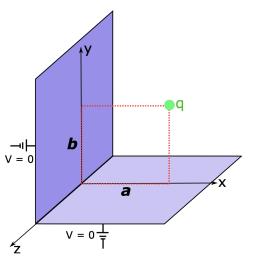
Two semi-infinite conducting sheets are grounded and connected at a right angle as seen in the figure. One sheet lies in the $\hat{x}\hat{z}$ plane and the other sheet lies in the $\hat{y}\hat{z}$ plane. A point charge, q, is placed at the coordinate (x, y, z) = (a, b, 0).



(b) [3 points] Determine the electric potential, V(x, y, z), for x, y > 0.

(c) [3 points] Calculate the work required to bring the charge to (x, y, z) = (a, b, 0) from a point that is infinitely far away from the sheets.

(d) [2 points] Calculate the charge densities, $\sigma(x, z)$ and $\sigma(y, z)$, that are induced on the sheet in the $\hat{x}\hat{z}$ plane and on the sheet in the $\hat{y}\hat{z}$ plane.



Problem 5 (10 points)

A spherically symmetric charge distribution exists within a sphere of radius R. The electric field inside the sphere points radially outward, and is of the form $\mathbf{E} = [Ar + Br^2]\hat{r}$.

- (a) [2 points] Calculate the charge density, $\rho(r)$.
- (b) [2 points] Calculate the electric field outside the sphere (r > R).
- (c) [2 points] Calculate the electric potential, V(r), for a point outside the sphere (r > R).
- (d) [2 points] Calculate the electric potential, V(r), for a point inside the sphere (r < R).
- (e) [2 points] How much work is required to assemble the charge distribution?

Hint: In spherical coordinates the divergence of a vector function can be expressed as:

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (A_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}.$$

Problem 6 (10 points)

An infinite conducting slab is centered about the $\hat{x}\hat{y}$ -plane and is shown in the upper figure to the right. The slab has a total thickness of 2*d*. A current density $\mathbf{J} = (kz^2)\hat{x}$ flows throughout the slab.

(a) [1 point] Determine the direction that the magnetic field points for z < 0 and z > 0.

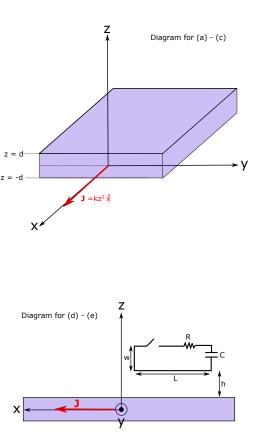
(b) [3 points] Determine the magnitude of the magnetic field, $\mathbf{B}(z)$, at some point inside the slab (|z| < d). $_{z=d}$

(c) [3 points] Determine the magnitude of the magnetic field, $\mathbf{B}(z)$, at some point outside the slab (|z| > d).

A loop of wire with resistance R and capacitance C is placed a height h above the top surface of the conducting slab. As shown in the lower figure on the right, this loop is in the $\hat{z}\hat{x}$ -plane. The loop has a length Land width w. At t = 0, a switch in the *loop* is closed and a complete circuit is formed. Simultaneously, the current density in the *slab* begins to increase linearly in time and is given by $\mathbf{J} = (ktz^2/T)\hat{x}$, where T is a time constant.

(d) [2 points] Determine the direction of current flow in the loop of wire.

(e) [1 point] Calculate the current induced in the loop of wire as a function of time.



PART III

Monday, May 9, 2022 10:00 - 12:00 pm

INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

- 1. the **special ID number** that you received from Delores Cowen,
- 2. the **problem number** (*i.e.* Problem 7).

Please make sure your answers are dark and legible.

Problem 7 (10 points)

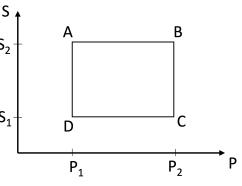
A system has three energy levels at $\epsilon=0$, $\epsilon=k_BT_a$, and $\epsilon=k_BT_b$, where k_B is the Boltzmann constant, $T_a=300$ K and $T_b=600$ K. The degeneracies of the levels are 1, 3, and 5, respectively. To receive full credit, provide *numerical* answers for all parts.

- (a) [3 points] Calculate the single-particle partition function at a temperature of 300K.
- (b) [2 points] Calculate the relative populations of the energy levels at 300K.
- (c) [2 points] Calculate the average energy per particle at 300K.

(d) [3 points] At what temperature is the population of the energy level at $k_B T_b$ equal to the population of the energy level at $k_B T_a$?

Problem 8 (10 points)

A heat engine runs in Joule's cycle, which consists of S_2 two constant pressure (P) processes and two constant entropy (S) processes, as shown in the diagram. Assume that the working material is a monatomic ideal S_1 gas.



(a) [2 points] Make a qualitative drawing of the cycle in the pressure-volume (P-V) diagram. Label the isobaric (constant pressure) steps. Label the isentropic (constant entropy) steps.

(b) [1 point] If the engine is to be run to produce work, will the cycle be clockwise or counterclockwise in the P-V diagram?

(c) [1 point] Which step in the P-V diagram has the heat coming into the engine? Give a reason.

(d) [1 point] Which step in the P-V diagram has the heat going out of the engine? Give a reason.

(e) [5 points] What is the efficiency of this heat engine in terms of the variables P_1 and P_2 only?

The following information might be useful.

For a constant-entropy process, $PV^{\gamma} = \text{constant}$, $TV^{\gamma-1} = \text{constant}$, and $TP^{(1-\gamma)/\gamma} = \text{constant}$, with $\gamma = 5/3$ for monatomic ideal gas.

Problem 9 (10 points)

A particle of mass m_0 at rest can decay into two particles of rest masses m_1 and m_2 only if the initial mass m_0 is greater than the sum of final masses, *i.e.* if the mass excess $\Delta = m_0 - m_1 - m_2$ is positive.

(a) [3 points] Derive the relativistic expressions for the kinetic energies of the two particles formed in the decay process with the mass m_0 initially at rest.

(b) [2 points] Show that the relativistic expressions for the kinetic energies of the two particles can be written as,

$$T_i = \left[1 - \frac{m_i}{m_0} - \frac{\Delta}{2m_0}\right] \Delta c^2, \quad (i = 1, 2).$$

(c) [2 points] Verify explicitly that the sum of the kinetic energies of the two particles equals Δc^2 .

(d) [3 points] A charged π meson of rest energy 139.6 MeV decays into a μ meson of rest energy 105.7 MeV and a neutrino with zero rest mass. Calculate the kinetic energies of the μ meson and the neutrino.

PART IV

Monday, May 9, 2022 13:30 – 15:30 pm

INSTRUCTIONS: This examination consists of three problems each worth 10 points. Use a separate booklet for each problem. Write the following information on the front cover of each booklet:

- 1. the **special ID number** that you received from Delores Cowen,
- 2. the **problem number** (*i.e.* Problem 7).

Please make sure your answers are dark and legible.

Problem 10 (10 points)

A particle of mass m is confined to move freely inside a two-dimensional square box, with impenetrable sides each of length L. The sides are parallel to the \hat{x} and \hat{y} axes with $0 \le x \le L$ and $0 \le y \le L$.

(a) [4 points] Derive the energy eigenvalues and the corresponding eigenfunctions of this particle.

(b) [3 points] What is the degeneracy of the lowest two allowed energy states?

(c) [3 points] Now, a small perturbation $V = \beta xy$ is introduced, where β is a constant. Calculate the energy shift of the ground state through first order perturbation theory.

Problem 11 (10 points)

Consider the single-particle state of an electron.

(a) [5 points] For a corresponding spin operator $\hat{S}_x + \hat{S}_y + \hat{S}_z$, what are its possible eigenvalues? What is the normalized eigenvector (also called eigenspinor) corresponding to the smallest eigenvalue?

(b) [5 points] Initially the electron is in an eigenstate corresponding to the smallest eigenvalue of the above spin operator given in (a). What is the probability that a measurement of \hat{S}_x gives the outcome of $+\hbar/2$? (Hint: first calculate the corresponding eigenvector of \hat{S}_x .)

Note the Pauli matrices are written as

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Problem 12 (10 points)

A quantum rotator is governed by the Hamiltonian

$$\hat{H} = \frac{\hat{L}_x^2 + \hat{L}_y^2}{2I_1} + \frac{\hat{L}_z^2}{2I_2},$$

where L_x , L_y , and L_z are the three components of orbital angular momentum, and $I_1 \neq I_2$ are the moments of inertia and are constants.

(a) [3 points] What are the energy eigenvalues of this rotator?

(b) [1 point] What are the corresponding normalized eigenfunctions (obtained without any new calculations)? You need to briefly explain your answer.

(c) [6 points] When this rotator is subjected to a perturbation $\hat{H}' = E \sin(2\theta)$, where E is a small constant, calculate the first-order energy corrections for the states with the azimuthal quantum number l = 1.

Note the following spherical harmonics:

$$Y_0^0 = \left(\frac{1}{4\pi}\right)^{1/2}, \quad Y_1^0 = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta, \quad Y_1^{\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{\pm i\phi}.$$